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Introduction of present research Precipitation strengthening is one of the main strengthening mechanisms in crystalline materials, which has been discovered more than hundred years ago. The primary progress in precipitation strengthening was focused on experimental results. In 1940, Mott and Nabarro investigated this mechanism more scientifically by considering interaction between a dislocation and particle. Evaluation of the yield strength by this mechanism is complex, when randomly distributed precipitates have different sizes during aging. To advance strengthening equations for simulation of the yield strength, a set of simplification were applied, which decreased the accuracy of simulations substantially.  In the present thesis, main focus is put on the development of strengthening equations based on physical parameters instead of existing phenomenological parameters. In the following, the highlights of some selected publications of the author are summarized and discussed briefly.        
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Kurzfassung Die vorliegende Dissertation beschreibt die Hauptaspekte eines physikalischen Modells für Ausscheidungshärtung in kristallinen Werkstoffen. Für die Evaluierung des Anstiegs der Streckgrenze wird ein System von Gleichungen abgeleitet, basierend auf der Interaktion zwischen Versetzungen und Ausscheidungen. Verschiedene Schermechanismen und Mechanismen ohne Scherung werden, basierend auf den zugrunde liegenden physikalischen Parametern, kritisch diskutiert. Der in dieser Dissertation verfolgte Ansatz erlaubt uns auch, Gleichungen für die Härtung nicht-sphärischer Ausscheidungen zu entwickeln, wobei der effektive Radius von der relativen Orientierung zwischen Partikel und der Richtung der Versetzungswanderung abhängt. Die Genauigkeit des Modells wird mittels Simulation der Streckgrenzenentwicklung in ausscheidungsgehärteter Ni-Basis Superlegierung Allvac® 718PlusTM validiert. 



ABSTRACT  

V  

Abstract The present thesis describes the main aspects of a physical model for precipitation strengthening in crystalline materials. For evaluation of the yield strength increase, a set of equations is derived based on the interaction between dislocations and precipitates. Different shearing and non-shearing mechanisms are discussed critically based on the underlying physical parameters. The approach followed in this thesis enables us to develop strengthening equations for non-spherical precipitates, too, where the effective radius is depending on the relative orientation between particle and the direction of dislocation movement. The accuracy of the model is verified by simulation of the yield strength evolution in the precipitation-strengthened Ni-base superalloy Allvac® 718PlusTM.  
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1 Introduction Precipitation strengthening (or precipitation hardening) has been discovered more than hundred years ago by Wilm in Al-alloys containing Cu and Mg (Duralumin) [1]. During 1903-1911, Duralumin became one of the most demanded alloys by industry. The first fundamental investigations on the mechanism of precipitation and aging of Duralumin were carried out by Merica et al. [2, 3]. By 1932, more than hundred precipitation hardening systems with fourteen base metals were explored by these researchers and reviewed comprehensively by Cahn [4].  The present concept of precipitation hardening is based on the work of Mott and Nabarro [5] proposed in 1940. In their model, Mott and Nabarro investigated the interaction between a single dislocation and the internal stress surrounding a particle, which causes strengthening. In a consistent and comprehensive theory, Orowan [6] first formulated an equation, which describes the interaction between dislocations and non-shearing particles. Later, Ashby [7] modified the Orowan equation to the form, which is currently used most often in calculation of the yield strength increase due to precipitation. In 1971, Brown and Ham [8] published a comprehensive critical review, in which they outline some improvement of models for different strengthening mechanisms. Their work was followed up by Ardell in 1985 [9]. This author proposed simplifications of previous physical models, in order to use the strengthening equations more conveniently. For this purpose, phenomenological components in the treatment of phase fractions and assumptions such as, for instance, distribution of particles with the same size, were introduced. Some uncertainty in determination of input parameters remained, however, such as the dislocation type (edge or screw) or chemical energies and the shear modulus of precipitates.  In the present thesis, focus is put on a deeper understanding of the interplay of physical 

parameters in the original models. Additionally, new developments of physical parameters, such as, a recent description of the 2D distance between randomly arranged particles by Sonderegger et al. [10], are incorporated in the yield strength expressions. The conventional strengthening equations of coherent and strong precipitates, as proposed by Brown and Ham [8], are modified and strengthening equations for non-spherical precipitates are developed [11]. Finally, a comprehensive set of equations is 
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presented for a predictive evaluation of the yield strength and verified on example of the Ni-base superalloy Allvac® 718PlusTM during aging.      
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2 The precipitation strengthening model In this section, the basic concepts behind our strengthening model are formulated in terms of the dislocation line tension and resistance force caused by precipitates. For a quantitative description of the dislocation – particle interaction, energy changes along the dislocation and inside and around the precipitate are the key input quantities.  
2.1 Dislocation line tension T For the evaluation of the dislocation line tension, first, the energy content of a linear dislocation in an isotropic elastic crystal far from the surface and other dislocations is formulated. In this case, the dislocation energy depends on the orientation of the dislocation in the crystal. The dislocation line tension, counted per unit length of dislocation, has been calculated by Cottrell [12] and Foreman [13] as 
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where G is the shear modulus, Ө is the angle between the dislocation line and its Burgers vector, b is the magnitude of the Burgers vector, υ is Poisson's ratio, and ro is the outer cut-off distance. ro is the distance to the closest parallel dislocation of opposite sign, which is the distance between two particles along the dislocation line for shearable precipitates [8, 9] and the average planar particle diameter for non-shearable precipitates [7, 9]. ri is the inner cut-off distance, which is the dislocation core radius with values between b and 4b [9]. The energy of the dislocation, E(Ө), is a function of the angle Ө between the Burgers vector and the tangent to the dislocation line. Since Ө=0 for screw dislocations and Ө=π/2 for edge dislocations, the character of a dislocation determines its energy. Eq. (1) shows that an edge dislocation stores more energy compared to a screw dislocation.  The difference between the dislocation energy and the line tension, T(Ө), which also depends on Ө, according to the relation given by Brown and Ham [8] is proposed as 
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Eq. (7) represents a general relation, which is used to express the shear stress according to different strengthening mechanisms for weak and shearable precipitates. Eq. (4) is applicable for strong and shearable precipitates by assuming L = Ls at the critical value when Ψ = Ψc (see Fig. 2(A)) as 

  
s

m

s

c 2/cos2
Lb

FJ
Lb
ΨTJ  .                                                                                                    (8) 

Fm corresponds to the maximum resistance force of precipitates that can be achieved and it is formulated for different strengthening mechanisms contributing to shearing, subsequently. 
In this equation, the parameter J is a correction coefficient, which depends on the mean free distance between particles. A value of J=0.8 is used, based on the Ashby model [7] for random arrangement of particles instead of particles in an ordered, periodic arrangement. Using the Sonderegger model [10], the free distance Ls between two particles can alternatively be calculated from Eqs. (38)-(39), later. A constant value of 
J=1 is used in this case. 
2.3.1 Coherency effect If a precipitate is embedded coherently in some given matrix phase, the difference between lattice parameters of matrix and precipitate produces a strain field, which potentially interacts with a moving dislocation. Depending on the magnitude of misfit, this mechanism often provides the most important strengthening contribution for coherent particles. 



PRECIPITATION STRENGTHENING MODEL 

7 

2.3.1.1 Weak and shearable precipitates Gerold and Haberkorn [15] proposed a strengthening model for weak and shearable precipitates based on isotropic elasticity theory. Accordingly, the force F between a straight dislocation and a spherical coherent precipitate on a slip plane is 
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Here, ε is the constrained strain produced by the stress free strain of lattice misfit δ [16], 
a is the lattice parameter of the matrix, r  is the mean radius of precipitates and Δa is the difference between lattice parameters of matrix and precipitate.  rz /  is a function depending on the interaction between the dislocation in the slip plane and the precipitate. z denotes the distance between the slip plane and the precipitate center. The values of the  rz /  function can be expressed by the following functions for an edge dislocation [15], 
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By applying the Pythagorean mixture law, as proposed by Brown and Ham [8], and combining Eqs. (7) and (9), strengthening due to the coherency misfit mechanism for weak and shearable precipitates from center of the precipitate up to infinity can finally be expressed as [17] 
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2.3.1.2 Strong and shearable precipitates Eq. (15) is used to describe the effect of coherency strain when the size of the precipitates is small or the outer cut-off angle is higher than 120°. In the case of large precipitates, which can bend dislocations to angles below 120°, the Friedel relation, Eq. (6), is no longer valid for Eqs. (15)-(17). The concept of strong precipitates is also dependent on the position of the dislocation in the slip plane with respect to the precipitate (z value). For example, at  rz / =0, a large precipitate acts as weak and shearable. When the  rz /  parameter is confined between 

        5.05.1 4/3/4/ TrbGrzrbGT   for edge dislocations, and 
        5.0

/// TrbGrzrbGT    for screw dislocations, precipitates have the capability of producing the bending condition corresponding to a strong precipitate.  In Fig. 3, three different regions, A, B and C, are distinguished to describe the interaction between a screw dislocation and a large precipitate, where region B is strong and shearable, and regions A and C are weak and shearable.  
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In the Siems et al. model [20], the dislocation energy inside the precipitate is assumed to be lower than that in the matrix (U1 < U2). The yield strength increment, due to the weak and shearable conditions, is [21] 
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and for strong and shearable precipitates [21], we get  
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In this equation, rs is the equivalent precipitate radius defined in different models. This will be further discussed later. Ep is the energy of a dislocation per unit length in infinite media of precipitate.  
In 1983, Nembach [22] considered modulus strengthening numerically by evaluating the interaction force between a dislocation and a spherical precipitate with different shear modulus from the matrix. In this model, the maximum interaction force becomes  
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where ߱ଵ and ߱ଶ are constants representing the dislocation core energy inside and outside the precipitate. Depending on the models used in [22], ߱ଵ varies from 0.0175 to 0.0722. ߱ଶ adopts a value of 0.81±0.09. By replacing the force in Eqs. (7) and (8) with Fm in Eq. (26), the shear stress according to the weak and strong modulus mechanism will be defined.  
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In the model of Nembach [22], the absolute value of the difference in shear modules between precipitate and matrix enters the equation. Consequently, this model applies to both situations, where the modulus of the precipitate is larger or smaller, as well.  
2.3.3 Chemical effects Dislocations entering a particle lead to breaking of chemical bonds. The rearrangement of chemical bonds into a different local chemical environment leads to strengthening. Generally, this effect is denoted as chemical strengthening. It is commonly distinguished between anti-phase boundary, stacking fault and interfacial effects.  
2.3.3.1 Anti-phase boundary effect If particles in a matrix show chemical ordering, the anti-phase boundary effect often represents the major strengthening mechanism. When a dislocation passes through an ordered precipitate, it destroys the periodic atomic arrangement in its slip plane. The disordered plane, which is left behind, is called anti-phase boundary (APB). In ordered crystal structures, the shearing dislocations travel in groups, where the number of dislocations in a group depends on the type of order structure (e.g. face-centered cubic L12, tetragonal D022). This observation is important for the interpretation of the ability of precipitates to restore to the perfect order structure after the precipitate-dislocation interaction. The first dislocation, which is denoted as leading dislocation, creates an anti-phase boundary in the precipitate. The second one, which is called trailing dislocation, compensates the effect of the first one and restores the ordered structure again. Depending on the size of the precipitate, two regimes are distinguished. 
2.3.3.1.1 Weak and shearable precipitates This regime is operative if the precipitates are small, i.e. the outer cut-off angle is Ψc >120°. The disordered precipitates stimulate the trailing dislocations towards the leading dislocation. This compensates, partly, the APB strengthening effect of the leading dislocation. The strengthening equation for the APB effect can be expressed by using Eq. (27) with Fm=2γAPB rs  as  [17] 
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where γAPB is the anti-phase boundary energy of the precipitate and  is a constant between 0.0 and 1.0.  is close to 1.0 when the trailing dislocation is straight. s is the number of pair dislocations in the group and the function Ϛ(rs/Ls) corresponds to the pulling tension of precipitates on the trailing dislocation. It is given as [23] 
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2.3.3.1.2 Strong and shearable precipitates When the precipitates are large, application of Eq. (27) becomes critical because the precipitates produce a high APB force. Hüther and Reppich [24] obtained a general expression for strong and shearable ordered particles as 
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where V is a parameter introduced for remaining dislocation segments incorporating also some other uncertainties. Its value is assumed to be 2.8 in ref. [25]. 
2.3.3.2 Stacking fault effect In some crystalline materials, the dislocation energy of a single dislocation can be reduced by dissociation into two partial dislocations. This process leads to a stacking fault (SF) in the slip plane between the partial dislocations 1 (P.1) and 2 (P.2). When the stacking fault energy (SFE) of the precipitate is lower than that of the matrix, the width of the ribbon band between two partials inside and outside of the precipitate differs. This difference produces a retarding force in front of the dislocation movement, which depends on the precipitate size and the width of the stacking fault in the matrix Wm and inside the precipitate Wp. Hirsch and Kelley [26] derived the maximum force as 
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Weff is the distance between P.1 and P.2, when P.1 is located at the precipitate circumference, K(ϴ) is the elastic energy per unit length between two partial dislocations and bp is the magnitude of the Burgers vector in the precipitate. On replacing Fm in Eqs. (7) and (8) by Eq. (30), finally, the yield stress increment for the weak mechanism is obtained. 
2.3.3.3 Interfacial effect When a dislocation cuts a coherent precipitate, two new ledges form. One is created after entering the precipitate, the other one after leaving it. These ledges cause an increment in the interfacial area in these regions. The maximum force related to this mechanism is expressed by Fm=2γIFE b [9], where γ୍୊୉ is the energy of the precipitate-matrix interface created by dislocation slip. Replacing Fm in Eqs. (7) and (8) delivers the yield strength increment due to the interfacial effect. 
2.4 Non-Shearing mechanism Ashby [7] suggested a widely used expression for the ultimate shear stress related to non-shearable precipitates. He introduced simplifying assumptions for the outer cut-off radius of the precipitate into the original Orowan equation and, furthermore, made assumptions on the dislocation character. Ashby considered the exact shape of the dislocation when a dislocation approaches a Frank-Read configuration between two precipitates. In this situation, which is shown in Fig. 1, the dislocation escapes the precipitate as soon as the outer cut-off radius reaches an angle of Ψ=0. Brown and Ham [8] approximated the condition of randomly distributed obstacles and formulated the critical shear stress as, 
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Insertion of Eq. (1) with θ=0 and θ=π/2 in Eq. (33) restores the well-known Orowan equation, which is, 
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different values between 0.129 J/m-2 and 0.188 J/m-2 for the anti-phase boundary energy (γAPB) of γ’ from different references, while Douin et al. [31] measured  γAPB=0.111 J/m-2 by using weak-beam electron microscopy.  In the present model, the strengthening equations are connected to the incipient physical parameters, which are varying during aging and unnecessary simplifications commonly used in conventional models are avoided. This is discussed in detail later. 
3.1 Non-spherical precipitates In some precipitation strengthening systems, for instance, Al-Mg-Si, Al-Cu, Al-Cu-Mg, Al-Zn-Mg and some Ni-base superalloys (Inconel 718, Rene 62, Udimet 630), precipitates are non-spherical. For these cases, the conventional strengthening equations are not applicable and it is difficult to advance these equations on a rigorous basis as long as they contain purely phenomenological parameters. Three different approaches are reported in literatures to simulate the yield strength for non-spherical precipitates: (i) Myhr et al. [32], in the Al-Mg-Si system, assumed that prolate precipitates are spherical and applied conventional strengthening equations, thus simply ignoring the shape effect. (ii) Nie and Muddle [33] modified the Orowan equation, Eqs. (33)-(34), for cylindrical disc shape precipitates in the Al-Cu-Sn system by using a stereological method. They assumed that the aspect ratio is higher that 40 (diameter / thickness) and simulated the yield strength increment based on this assumption. In their model, they assumed that the precipitates are not shearable at all and ignored all shearing mechanisms. This model has been developed for rod shape precipitates in aluminum and magnesium alloys, too [34, 35]. (iii) Computer simulations of moving dislocations in their slip plane were used in the method of Zhu and Starke [36], where the moving dislocations are crossing rod-shape particles elongated in 〈100〉 direction or circular platelet particles extended in the {100} planes [37-39]. Similar to Nie and Muddle [33], this method does not account for the case of coherent and shearable precipitates. In our approach, as outlined in section 2, the strengthening equations are functions of physical parameters only, which can straightforwardly be advanced for prolate and 
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oblate precipitates considering all shearing and non-shearing strengthening mechanisms [11, 29].  
3.2 Dislocation line tension The dislocation line tension varies in the course of particle aging processes due to changes in the mean free distance between two particles along the dislocation line and the angle between the dislocation line with the Burgers vector θ due to the dislocation bending behind a particle [40]. In the early stages of aging, precipitates are considered as being weak and the dislocation character remains unaffected when the dislocation is nearly straight. Once the precipitates grow, the dislocation character changes during bending behind the strong precipitates.  Dieter [40] measured the dislocation energy per unit length based on Eq. (1) in annealed crystals. He assumed that ro = 10-7 m and ri =2·10-10 m; then ln(ro/ri)≈2π. After replacing the parameters for outer and inner cut-off radius and using υ=1/3, the resulting dislocation energies for screw and edge dislocations become 
E(0)=(1/2)Gb2 and E(π/2)=(3/4)Gb2, respectively. In the same way, using Eq. (3), the dislocation line tension for screw and edge dislocations are T(0)=Gb2 and 
T(π/2)=(1/4)Gb2, respectively. In contrast, Ardell [9] proposed ln(ro/ri)≈4 at peak strength. These different assumptions in conventional models produce rather large differences in the absolute value of the strengthening effect, thus indicating that the dislocation line tension is a critical parameter for precipitation strengthening. For simulation of the yield strength, the dislocation line tension is proposed to be 
T=(1/2)Gb2 in Refs.[ 8, 9, 15, 21, 24, 26, 39].  In practical simulation, accurate result can only be obtained after performing a thorough characterization of the dislocation character, which is a mixture of edge or screw, and by accurately determining the free distance between two particles. Both these parameters are dynamic in nature and vary during aging.  
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3.3 Free distance between precipitates  

3.3.1 Spherical precipitates The free distance between two particles is a crucial input quantity in precipitation strengthening theory. In his early model, Ashby [7] assumed that all precipitates have the same size and that they are distributed on a square array without preferential point for nucleation. Based on these assumptions, the free distance between two precipitates, 
Ls,c, is represented as [7] 












 srN

L 21

s
cs, ,                                                                                                                          (35) 

where Ls,c is the surface to surface distance between two particles located in the square arrangement and Ns is the number of particles, which intersect unit area of slip plane. The relation between Ns and the number of particles per unit volume of the matrix, Nv, is 
Ns=2 r Nv.                                                                                                                                           (36) Whereas the square array is a reasonable approximation of the real situation for many alloy systems, in other precipitation hardening materials, such as aluminum alloys AA2xxx and AA6xxx or γ’’-hardened superalloys, precipitates nucleate in a close-packed triangular array [41]. In this case, Ls,c should be modified to the following form, where the surface to surface distance between two particles located in triangular arrangement, 
Ls,t , is 
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In general, strengthening models based on Eqs. (35) and (37) (see the work of Russell and Brown [21], Kelly [42] and Fullman [43]) are physically correct when the ordered precipitates have same sizes. However, their accuracy decreases for small particles with 
r<0.04 r , where r  is the mean radius of the precipitate distribution. Moreover, when being applicable for r<0.04 r , the results are not satisfying at r . The phase fraction of precipitates has a similar effect on the free distance of two particles. In a numerical analysis, Sonderegger et al. [10] simulated the shearing of particles in the dislocation 
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slip plane for 105 randomly distributed precipitates in 100 size classes in volume. They calculated the free distance distribution between two particles by varying radius at constant phase fraction and vice versa. Their simulation result showed that the deviation between classical models and numerical simulation could be 70% and more for the classical models.  These authors presented an alternative model for arbitrary precipitate sizes and randomly distributed particles in a matrix. In this model, precipitates are divided into discrete size classes. Each class contains precipitates from within a specific radius interval, rc, and a number density of particles, nv,c. A general formulation for the free distance between two particles in the slip plane is derived as 
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where rss is the mean projected radius. The Sonderegger et al. model delivers more accurate results for various size distributions and different phase fractions. The difference in free distance between two particles obtained from Eq. (38) and numerical analysis described in Ref. [10] is in all cases less than 30%. 
3.3.2 Non-spherical precipitates Eqs. (38) and (39) have been established for spherical particles. For ellipsoid precipitates in fcc structure, Sonderegger and Kozeschnik [29] introduced a correction factor for λss, depending on a shape factor h, as  
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a
ch  ,                                                                                                                                                 (41) where Ls,ell is the free distance between two ellipsoidal precipitates. c is the half axes of the particle parallel to its rotational axes and a is the according half length perpendicular to the rotational axes. In this model, precipitates can be rotational needle-shaped ellipsoids (prolate particles), which are elongated in <100> directions, or rotational lens-shaped ellipsoids (oblate particles) elongated in {100} planes.  

3.4 Equivalent radius 

3.4.1 Spherical precipitates The spatial extension of the interfering part between a dislocation and a precipitate, the so-called equivalent radius, varies between 0 and the radius of the precipitate. There are two approaches to measure the equivalent radius, one by Ardell [9] and the second by Brown & Ham [8]. Ardell considered the projection of the precipitate onto a plane perpendicular to the slip plane of the dislocations. The resulting geometric figure is a circle with radius r and area πr2. Ardell then replaced this circle by a rectangle with the same area and same height in z direction. The average planar radius in this model is then 
rrs 4a,


 .                                                                                                                                           (42) 

In the Brown and Ham approach, the volume effect is taken into account. Brown and Ham replaced the spherical precipitate by a cylindrical precipitate with the same volume (4/3 πr3) and same height in z direction. The mean radius of the circular section in the dislocation slip plane in this model is [8, 28] 
rrs 3

2
b,  .                                                                                                                                         (43) 

3.4.2 Non-spherical precipitates 

3.4.2.1 Shearing mechanism Eqs. (42) and (43) are applicable for spherical particles, but, in fact, precipitates often have different shapes and orientations. Examples for fcc-structured non-spherical 
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precipitates are β’’ needles oriented in <100> directions in aluminum 6xxx series, and θ’’ and γ’’ precipitates extended in {100} planes in aluminum 2xxx series and Inconel 718, respectively. In the present modeling, the needle-shaped particles in an fcc-structure are described by the prolate-type precipitate in <100> directions (h>c/a) and the lens-shape precipitates are represented by oblate-type extending in {100} planes (h<c/a) [11].  In the case, where an edge or screw dislocation encounters each precipitate orientation with the same probability, the average mean values eq  are found as 
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     hPhPh screweq,2edgeeq,1eq   ,                                                                                        (46) 
where )(edgeeq, h and )(screweq, h  are referred to as the effective equivalent radius in front of edge and screw dislocations in the slip plane, respectively, and P1 and P2 are the fractions of edge and screw dislocations , respectively. Eq. (46) defines a coefficient for ellipsoidal precipitates for the shearing mechanism. Replacing rs by  heq  in strengthening equations introduces a more general relation, which is applicable for spherical precipitates, too [11].  
3.4.2.2 Non-shearing mechanism In the non-shearing mechanism (Orowan mechanism), dislocations are blocked in front of the precipitates and do not shear them. Consequently, the precipitate-dislocation interaction is independent of the intrinsic precipitate properties. The outer cut-off radius, Req, is the full width of the particles cross-section normal to the direction of dislocation movement.  The geometry of the particles relative to the moving dislocations for the Orowan mechanism is the same as for the shearing mechanism, which leads to mean outer cut-off radii of 
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     hRPhRPhR screweq,2edgeeq,1eq  .                                                                                          (49)   
where )(edgeeq, hR and )(screweq, hR  are referred to as the equivalent outer cut-off radii in front of edge and screw dislocations in the slip plane, respectively.  Eq. (49) defines a coefficient for ellipsoidal precipitates in the Orowan mechanism. Replacing 2rs by  hReq  in Eq. (34) provides a general equation, which is applicable for spherical and ellipsoidal precipitates.  
3.5 Superposition of strengthening mechanisms In precipitation-strengthened multi-component and/or multi-phase materials, the different nature and size of particles will lead to a situation where the total strengthening effect is given by a mixture of different strengthening mechanisms. Even with just one kind of precipitate, a distribution of particle sizes in different slip planes of dislocations must be expected, thus, representing a situation where each precipitate has different strengthening potential and the total strength contribution must in some way be superposed.  For a prediction of the combined effect of all individual strengthening contributions, several investigations have been performed and various approaches exist [8-11, 45-46]. The basic result of these studies can be lumped up in the superposition expression 
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where q is an exponent, which commonly lies between 1 and 2. Eq. (50) delivers the shear stress of a precipitation-strengthened material with a mixture of operative strengthening mechanisms.  
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In this figure, the q value for the weak and shearable mechanism and the strong and shearable mechanism is approximately 1.8. The operative strengthening mechanism for a specific precipitate is the one with lower strength among the weak mechanisms (WM), strong mechanisms (SM) and the Orowan mechanism. When there are different particles in the matrix, the mixture law of Ardell [9] should be used. As shown in the flowchart, q is 1.8 when the operative strengthening mechanism in different particles is the WM.  In the same way, q is 1.8, when the operative strengthening mechanism in different particles is SM or Orowan. For the combination of WM with SM or Orowan, q is 1.4.  In the present study, this procedure is utilized for superposition of all shearable and non-shearable effects including coherency, modulus, APB, stacking fault and interfacial effects.  
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4 Yield strength prediction in Ni-base alloy 718Plus The performance of gas turbines and aero-engines can be improved by increasing the operating temperature of these devices. Whereas the Ni-base superalloy Inconel 718 shows superior mechanical properties up to 650°C [48], the alloy Allvac® 718PlusTM (hereafter 718Plus) developed by ATI Allvac in 2004 can be operated at even 55K higher service temperature. For the yield strength modeling, an integrated approach considering all types of contributions to the final yield strength (σy) is used, which has been implemented in the solid-state transformation kinetics software MatCalc, version 5.60 (rel 0.005) [49-51]. The composition of 718plus used in this survey is given in table 1.  Table 1: Chemical composition of alloy 718plus. 
 Al Co Cr Nb C Fe Mo Ti  W Ni %Wt 1.46 9.13 17.42 5.48 0.028 9.66 2.72 0.71 1.04 balance  A conventional heat treatment process is applied in this work. The specimens are solution annealed at 975°C for 60 minutes, water quenched and aged at 788°C for different aging times (1, 5, 10, 25 and 50 hours). The final yield strength (σy) in this type of annealed crystalline material is constituted by grain boundary strengthening (σy,g), solid solution strengthening (σy,s) and precipitation strengthening (σy,p), which are simply combined linearly [52] as 

py,sy,gy,y                                                                                                                       (51) 
In the following, the models for the individual strengthening contributions to σy are briefly reviewed.  
4.1 Grain boundary effect Grain boundaries act as impenetrable barriers for dislocation movement, and contribute, together with the friction stress σi, to the yield strength of a crystalline matrix. This concept was formulated by Hall [53] and expanded by Petch [54] as 
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igy,  .                                                                                                                             (52) 
σi is the friction stress of the crystal lattice to dislocation movement, klock is the locking parameter of grain boundary hardening and D is the grain diameter [40, 54]. Thompson [55] determined the friction stress of Ni-based superalloys as σi=21.8 MPa and 
klock=0.158 MPa m1/2. The measured grain size of 718Plus after quenching is approximately 20 μm. Consequently, the grain size effect produces an increment in final yield strength equal to σy,g =56 MPa 
4.2 Solid solution strengthening The common equation describing the solid solution strengthening effect, as reviewed by Butt [56], is 

p
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Here, ks,i is a strengthening constant for solute i, Ci is the concentration of solute i and p is a constant often equal to 1/2  [57, 58]. σy,s,i defines the yield strength increment due to solute i.  For evaluation of the yield strength in multicomponent systems, Gypen and Deruyttere [59] proposed a method to integrate the overall yield strength increment of different alloying components based on the equation, 
  q

i

qp
iiCk

1

,ssy, 







                                                                                                                      (54) 

where 2=ݍ and p=1/2. Mishima et al. [60] defined ks,i experimentally for different alloying elements in binary systems Ni-X, with X being an element from the transition metal group. Their results are summarized in table 2.  Table 2  ks,i strengthening constants of different alloying elements in Ni, from ref. [60] 
Alloying element Al Co Cr Nb C Fe Mo Ti  W Strengthening constant (MPa At. Fraction-1/2) 225 39.4 337 1183 1061 153 1015 775 977
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shearing mechanisms and (f) contribution of all strengthening components to σy. Results of compression tests are included (symbols) [61].  Table 3: Strengthening parameters used in the precipitation hardening simulation 
parameters values Comments 

M (Taylor factor) 2.6 Ref. [63] 
G (GPa) 80.1 Ref. [64] 
GP (GPa) 77.8 Ref. [65] 
γAPB (Jm-2) 0.111 Ref. [31] 
γIF (Jm-2) 0.135-0.16* MatCalc thermodynamic database 
δ 0.004 Measured [61, 62] 
b (nm) 0.254  
ν 0.33  
ri 2b  *The interfacial energy is composition- and temperature-dependent 

Fig. 9 (b) analyzes the computed individual yield strength increment due to the APB effect. This effect is stronger than the coherency effect. Somewhere in the middle of the present heat treatment, the strong mechanism for anti-phase boundary strengthening replaces the weak mechanism.  Fig. 9 (c) shows the yield strength increase due to the modulus strengthening effect. Since the shear modulus of γ' precipitates is close to the values of the 718Plus matrix (see table 3), this effect makes up for a value of less than 10 MPa. The chemical effect is even more insignificant than the modulus effect; less than 5 MPa strengthening for the weak mechanism is computed (see Fig. 9 (d)).  Fig. 9 (e) illustrates the simulated contributions of weak and strong regimes obtained from the coherency, APB, modulus and interfacial effects. From the plot, it is evident that the operative strengthening mechanism in 718Plus aged at 788°C is weak and shearable at the early aging hours (before 10 hours aging) and non-shearable at prolonged aging.  The experimental total yield strength values, σy, illustrated in Fig. 9 (f) show a maximum at σy=1095 MPa after 10 hours. From the simulation results, it can be concluded that, before 10 hours, nucleation and growth of γ' precipitates prevails and, thus, the effect of 
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radius increment dominates over the effect of number density decrement during coarsening. This is also visible by a rapid increase in the volume fraction evolution, Fig. 8 (c), in the first 10 hours. The approximately constant volume fraction of γ' is located inside the region of coarsening, where a yield strength reduction is observed [61, 62].  Fig. 7 gives a clear indication of the relation between solid solution strengthening and precipitate evolution from nucleation and growth to coarsening. The yield strength due to constitutional alloying elements of γ', such as Nb, Ti and Al decreases at early aging time up to 10 hours. Afterwards, the concentration of each alloying element in the matrix becomes almost constant and, thus, also the solid solution strengthening effect. Fig. 9 (f) summarizes our computed total yield strength evolution, σy, in 718Plus compared with results from compression tests, as well as the simulated contribution of individual strengthening contributions from intrinsic strength and grain size effect, solid solution strengthening and precipitation strengthening during isothermal aging at 788°C. The grain size and intrinsic effects are practically constant because the grain size is unchanged during aging. The predicted decreased solid solution strengthening during aging is by far compensated by the amount of precipitation strengthening, which provides more than 65% of the total yield strength at peak strength [61, 62]. 
5 Summary In this thesis, the classical strengthening models for both, shearing and non-shearing, mechanisms are reviewed, discussed and further developed. Where possible, these approaches are modified on basis of recent progress in modeling of essential input parameters for precipitation strengthening with the goal of making the strength predictions more quantitative and accurate.  The proposed equations are established on basis of physical input parameters. These are, among others, dislocation character, precipitate radius, outer cut-off radius and mean free distance between precipitates. Phenomenological parameters are widely avoided, thus increasing accuracy and predictability of the equations.  
The free distance between two precipitates decreases when the precipitate shape deviates from 

spherical. This effect generally increases the yield strength of the material. The increase of the 

equivalent radius of oblate precipitates in both, shearing and non-shearing mechanisms, 

increases the final yield strength. In contrast, the decrease of the equivalent radius of prolate 
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precipitates decreases the final yield strength. This negative effect is partially compensated by 

the decreasing mean distance between prolate precipitates such that the final yield strength is 

close to the one of spherical precipitates.  

Different methods are discussed for combination of different strengthening mechanisms in complex systems to obtain the final yield strength of multi-phase, multi-particle materials. Finally, it is demonstrated that the yield strength of the Ni-base superalloy Allvac 718Plus can be accurately predicted over the entire heat treatment cycle. The coupling of yield strength simulation with thermo-kinetic computation of the precipitate evolution shows that precipitation strengthening increases significantly with the volume fraction increase of γ' precipitates. At peak strength, the phase fraction of γ' becomes almost constant. Precipitate coarsening during prolonged aging at 788°C has a negative effect on the final yield strength. The yield strength simulation, which is based on physical modeling and thermo-kinetic precipitation simulation, suggests that, before 10 hours aging, the operative strengthening mechanism in 718Plus is shearing. Afterwards, the strengthening is provided by the non-shearing mechanism. 
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List of symbols: 

a (ap) Lattice parameter of the matrix (precipitate) 
Δa | a - a p| 
b (bp) Magnitude of Burgers vector in matrix (precipitate) 
dSF The length of partial dislocation 2 inside precipitate when P.1 is still in circumference of precipitate 
E or E(Ө) Energy of dislocation per unit length in matrix 
Ep Energy per unit length of a dislocation in infinite media of precipitate 
f  phase fraction of precipitate 
F Precipitate resistance force  

mF Maximum resistance force of precipitate in different mechanisms 
G (Gp) Shear modulus of matrix (precipitate) 
h aspect ratio of precipitate 
J Correction constant for random arrangement of particles instead of ordered, periodic arrangement (=0.8 or 1) 
K(ϴ) is elastic energy per unit length between two partial dislocations 
L Distance between two particles along dislocation (General definition) 
Lc,c center to center distance between two particles 
Leff Distance between two precipitates along a dislocation at critical configuration of weak and shearable particles 
Ls Surface to surface distance between two particles 
Ls,c Surface to surface distance between two particles in square arrangement of precipitates 
Ls,s Surface to surface distance between two particles in Sonderegger model [10] 
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Ls,t Surface to surface distance between two particles in a close-packed triangular array  
nv,c Number density of particles in each class of precipitates 
Ns Number of particles intersecting unit area of slip plane  
Nv Number of particles per unit volume of the matrix 
P Constant (=0.5) 
P1 The fraction of the edge dislocation 
P2 The fraction of the screw dislocation 
q Variable between one and two 
rc Specific radius of precipitates in each class 
ro Outer cut-off distance 
ri Inner cut-off distance 
r Mean radius of precipitates  
rs Equivalent radius of precipitate in different models. 
rs,a Average planar radius in the model of Ardell [9] 
rs,b Mean radius of circular section in slip plane in the model of Brown & Ham [8] 

 hReq  Equivalent outer cut-off radii in front of moving dislocation in non-shearing mechanism 
R The radius of curvature of the dislocation at critical breaking stress  
s  Number of pair dislocations in the group  
T or T(Ө) Dislocation line tension  
U1 Dislocation energy inside the precipitate 
U2 Dislocation energy inside the matrix 
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V Parameter introduced for remaining dislocation segments and some other uncertainties 
Weff is distance between P.1 and P.2 when P.1 is located at precipitate circumference  
Wm (Wp) width of stacking fault in matrix (precipitate) 
X Direction of dislocation movement 
Y Dislocation line direction 
Z Perpendicular direction to the slip plane 
z position of the dislocation in the slip plane with respect to the precipitate center 
α1 The angle between dislocation and the normal of the interface in spherical precipitates inside the precipitate 
α2 The angle between dislocation and the normal of the interface in spherical precipitates outside the precipitate  β Constant between 0.0 and 1.0  γAPB Anti-phase boundary energy of precipitate γIFE Energy of a matrix-precipitate interface created by dislocation slip γSFM (γSFP) Stacking fault energy of the matrix (precipitate) 
Φ Angle through dislocation bending behind two precipitate 
δ Fractional lattice misfit between an in situ coherent precipitate and matrix 
ε Constrained strain  
Ө Angle between the dislocation line and its Burgers vector  
τ Critical resolve shear stress (external shear stress) 
υ (υp) Poisson's ratio of matrix (precipitate) 
Ψ Dislocation bending angle (outer cut-off angle)  
Ψc Critical outer cut-off angle  
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ω1 Constant between 0.0175 to 0.0722 
ω2 Constant equal to (=0.81±0.09) 

 heq  Effective equivalent radii in front of moving dislocation in shearing mechanism 
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a b s t r a c t

In this work, we present a consistent model describing the increase of yield strength caused by precipi-
tation of second phase particles. Shearing and non-shearing mechanisms are accounted for, depending on
the coherency between precipitates and matrix.

The physical key parameters entering the model are critically evaluated on basis of the dislocation line
tension, free distance between two particles and precipitate radius. A set of equations is derived, which
describes the yield strength increase due to the interaction between dislocations and precipitates. Based
on coupling equations for the individual strengthening mechanisms, the model allows for a predictive
simulation of the final yield strength caused by precipitation in multi-particle, multi-phase systems. With
the aid of contemporary computational power, the enhanced strengthening equations deliver more accu-
rate results compared to the conventional equations.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Precipitation strengthening (or precipitation hardening) has
been discovered more than hundred years ago by Wilm in Al-alloys
containing Cu and Mg (Duralumin) [1]. During 1903–1911, Dural-
umin became one of the most demanded alloys by industry. The
first fundamental investigations on the mechanism of precipitation
and aging of Duralumin were carried out by Merica et al. [2,3]. By
1932, more than hundred precipitation hardening systems with
fourteen base metals were explored by these researchers and
reviewed comprehensively by Cahn [4].

The present concept of precipitation hardening is based on the
work of Mott and Nabarro [5] proposed in 1940. In their model,
Mott and Nabarro investigated the interaction between a single
dislocation and the internal stress surrounding a particle, which
causes strengthening. In a consistent and comprehensive theory,
Orowan [6] first formulated an equation, which describes the
interaction between dislocations and non-shearing particles. Later,
Ashby [7] modified the Orowan equation to the form, which is
currently used most often in calculation of yield strength increase
due to precipitation. In 1971, Brown and Ham [8] published a com-
prehensive critical review, in which they outline some improve-
ment of models for different strengthening mechanisms. Their
work was followed up by Ardell in 1985 [9]. This author proposed
simplifications of previous physical models, in order to use the
strengthening equations more conveniently. For this purpose, phe-
nomenological components in the treatment of phase fractions and
assumptions such as, for instance, distribution of particles with the
same size, were introduced. Some uncertainty in determination of
input parameters remained, however, such as dislocation type
(edge or screw) or chemical energies and shear modulus of
precipitates.

In the present paper, focus is put on a deeper understanding of
the interplay of physical parameters in the original models. Addi-
tionally, new developments of physical parameters, such as, a
recent description of the 2D distance between randomly arranged
particles by Sonderegger et al. [10], are incorporated in the yield
strength expressions. Finally, a comprehensive set of equations is
presented and investigated in a virtual matrix-precipitate
strengthening system, which accounts for all studied precipitation
strengthening mechanisms simultaneously. In contrast to phe-
nomenological strengthening equations, our approach allows for
the prediction of strengthening for non-spherical precipitates, too
[11].
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Nomenclature

List of symbols
a (ap) lattice parameter of the matrix (precipitate)
Da |a � ap|
b (bp) magnitude of Burgers vector in matrix (precipitate)
dSF the length of partial dislocation 2 (P.2) inside precipitate

when P.1 is still in circumference of precipitate
E or E(h) energy of dislocation per unit length in matrix
Ep energy per unit length of a dislocation in infinite media

of precipitate
f phase fraction of precipitate
F precipitate resistance force
Fm maximum resistance force of precipitate in different

mechanisms
G (Gp) shear modulus of matrix (precipitate)
J correction constant for random arrangement of particles

instead of ordered, periodic arrangement (=0.8 or 1)
K(b) is elastic energy per unit length between two partial

dislocations
L distance between two particles along dislocation (Gen-

eral definition)
Lc,c center to center distance between two particles
Leff distance between two precipitates along a dislocation at

critical configuration of weak and shearable particles
Ls surface to surface distance between two particles
Ls,c surface to surface distance between two particles in

square arrangement of precipitates
Ls,s surface to surface distance between two particles in

Sonderegger model [10]
Ls,t surface to surface distance between two particles in a

close-packed triangular array
nv,c number density of particles in each class of precipitates
Ns number of particles intersecting unit area of slip plane
Nv number of particles per unit volume of the matrix
q variable between one and two
rc specific radius of precipitates in each class
ro outer cut-off distance
ri inner cut-off distance
�r mean radius of precipitates
rs equivalent radius of precipitate in different models.
rs,a average planar radius in the model of Ardell [9]
rs,b mean radius of circular section in slip plane in the mod-

el of Brown and Ham [8]
�re;crit;weak the critical radius of precipitate in front of edge disloca-

tion where the shear strength mechanism changes from
weak to strong

�rs;crit;weak the critical radius of precipitate in front of screw dislo-
cation where the shear strength mechanism changes
from weak to strong

�re;crit;strong the critical radius of precipitate in front of edge disloca-
tion where the shear and strong mechanism changes to
Orowan mechanism

�rs;crit;strong the critical radius of precipitate in front of screw dislo-
cation where the strong shear mechanism changes to
Orowan mechanism

R the radius of curvature of the dislocation at critical
breaking stress

RAPB elastic interaction force between two strongly paired
dislocations

s number of pair dislocations in the group
T or T(h) dislocation line tension
U1 dislocation energy inside the precipitate
U2 dislocation energy inside the matrix
V parameter introduced for remaining dislocation seg-

ments and some other uncertainties
Weff is distance between P.1 and P.2 when P.1 is located at

precipitate circumference
Wm (Wp) width of stacking fault in matrix (precipitate)
X direction of dislocation movement
Y dislocation line direction
Z distance between slip plane to precipitate center
a1 the angle between dislocation and the normal of the

interface in spherical precipitates inside the precipitate
a2 the angle between dislocation and the normal of the

interface in spherical precipitates outside the precipi-
tate

b constant between 0.0 and 1.0
cAPB anti-phase boundary energy of precipitate
cIFE energy of a matrix-precipitate interface created by dis-

location slip
cSFM (cSFP) stacking fault energy of the matrix (precipitate)
U angle through dislocation bending behind two precipi-

tate
d fractional lattice misfit between an in situ coherent pre-

cipitate and matrix
e constrained strain
h angle between the dislocation line and its Burgers vec-

tor
s critical resolve shear stress (external shear stress)
t(tp) Poisson’s ratio of matrix (precipitate)
W dislocation bending angle (outer cut-off angle)
Wc critical outer cut-off angle
x1 constant between 0.0175 and 0.0722
x2 constant equal to (=0.81 ± 0.09)
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2. The precipitation strengthening model

In this section, the basic concepts behind our strengthening
model are formulated in terms of the dislocation line tension and
resistance force caused by precipitates. For a quantitative descrip-
tion of the dislocation – particle interaction, energy changes along
the dislocation, inside and around the precipitate are the key input
quantities.
2.1. Dislocation line tension T

For the evaluation of the dislocation line tension, first, the
energy content of a linear dislocation in an isotropic elastic crystal
far from the surface and other dislocations is formulated. In this
case, the dislocation energy depends on the orientation of the dis-
location in the crystal. The dislocation line tension, counted per
unit length of dislocation, has been calculated by Cottrell [12]
and Foreman [13] as

E hð Þ ¼ Gb2

4p
1� t cos hð Þ2

1� t

 !
ln

ro

ri

� �
; ð1Þ

where G is the shear modulus, h is the angle between the dislocation
line and its Burgers vector, b is the magnitude of the Burgers vector,
t is Poisson’s ratio, and ro is the outer cut-off distance. ro is the dis-
tance to the closest parallel dislocation of opposite sign, which is
the distance between two particles along the dislocation line for
shearable precipitates [8,9] and the average planar particle diame-
ter for non-shearable precipitates [7,9]. ri is the inner cut-off
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distance, which is the dislocation core radius with values between b
and 4b [9]. The energy of the dislocation, E(h), is a function of the
angle h between the Burgers vector and the tangent to the disloca-
tion line. Since h = 0 for screw dislocations and h = p/2 for edge dis-
locations, the character of a dislocation determines its energy. Eq.
(1) shows that an edge dislocation stores more energy compared
to a screw dislocation.

When an anisotropic strain field exists around a dislocation, we
must consider also the dislocation core energy and modify Eq. (1)
depending on the dislocation character and the matrix [14,15].
Clouet et al. [16] determined the dislocation core energy of screw
dislocations in bcc iron with an amount of 14% of the total
dislocation energy. In the present development of strengthening
equations, we consider the dislocation line energy in an isotropic
elastic crystal and neglect the dislocation core energy.

We distinguish between the dislocation energy and the line ten-
sion, T(h), which also depends on h, according to the relation given
by Brown and Ham [8] as

T hð Þ ¼ E hð Þ þ d2E hð Þ
dh2 ; ð2Þ

and, finally,

T hð Þ ¼ Gb2

4p
1þ t� 3t sin hð Þ2

1� t

 !
ln

ro

ri

� �
: ð3Þ

In the following treatment, we use the symbol T for T(h) and omit
explicitly writing the angle dependence for the sake of brevity.
2.2. Interaction between dislocations and precipitates

The process of bowing out of a dislocation between spherical
precipitates as a consequence of an external shear force is
described by the equilibrium between the line tension T of the dis-
location, the dislocation bending angle (outer cut-off angle) W and
the critical resolved shear stress s with the precipitate resistance
force F. According to [8], this equilibrium, which is shown in
Fig. 1, is expressed as

sbL ¼ 2T cos
W
2
¼ F: ð4Þ

In this equation, s is the external shear stress and L is the distance
between two particles along the dislocation.
Fig. 1. Balance force between a precipitate and a dislocation.
2.3. Shearing mechanisms

When dislocations enter and shear (cut) a spherical precipitate,
the maximum resistance force exerted by the precipitate is propor-
tional to the projection of the dislocation line tension in the direc-
tion of movemen Fm ¼ 2T cos Wc=2ð Þ, as depicted in Fig. 1. If the
critical outer cut-off angle is between 120� 6Wc 6 180�, a particle
is denoted as weak and shearable. Between 0� 6Wc 6 120�, the
particle is considered as strong and shearable. The angle Wc

strongly depends on the size of the particle and dislocation
character.

For weak and shearable particles, it is assumed that /c = sin
/c = ds/R where R is the radius of the dislocation curvature at the
critical breaking stress. Accordingly, Eq. (4) is simplified (see
Fig. 1) as

s ¼ 2T
bLeff

cos
Wc

2
: ð5Þ

In this equation, Leff is the distance between two precipitates along
the dislocation in the critical configuration for weak and shearable
particles. Leff is different from the surface to surface distance
between two particles Ls, because, for weak and shearable precipi-
tates, dislocations cut the precipitates when the outer cut-off angle
is between 120� 6Wc 6 180� and are released from the particle
sooner. Consequently, the distance between two precipitates is
increased along the dislocation, and Leff > Ls. This effect is shown
schematically in Fig. 2.

The relation between Ls and Leff has been evaluated by Friedel
[17] between too small particles with

Ls ¼ Leff cos
Wc

2

� �1
2

: ð6Þ

Using Eqs. (4)–(6), one obtains

s ¼ 2T
bLs

Fm

2T

� �3
2

: ð7Þ

Eq. (7) represents a general relation, which is used to express the
shear stress according to different strengthening mechanisms for
weak and shearable precipitates. Eq. (4) is applicable for strong
and shearable precipitates if we assume L = Ls at the critical value
when W = Wc (see Fig. 2(A)) as

s ¼ J
2T cos Wc=2ð Þ½ �

bLs
¼ J

Fm

bLs
: ð8Þ

Fm corresponds to the maximum resistance force of precipitates
that can be achieved and it is formulated for different strengthening
mechanisms contributing to shearing, subsequently.
Fig. 2. Free distance between two precipitates along dislocation line in a random
array. (A) The precipitates are shearable and strong and (B) the precipitates are
shearable and weak.



Fig. 3. Dislocation treatment inside precipitate, when the Young’s modulus of the
precipitate is lower than the Young’s modulus of the matrix.
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In this equation, the parameter J is a correction coefficient,
which depends on the mean free distance between particles. A
value of J = 0.8 is used, based on the Ashby model [7] for random
arrangement of particles instead of particles in an ordered, periodic
arrangement. Using the Sonderegger model [10], the free distance
Ls between two particles can alternatively be calculated from Eqs.
(49) and (50), later. A constant value of J = 1 is then used.

2.3.1. Coherency effect
If a precipitate is embedded coherently in some given matrix

phase, the difference between lattice parameters of matrix and
precipitate produces a strain field, which potentially interacts with
a moving dislocation. Depending on the magnitude of misfit, this
mechanism often provides the most important strengthening con-
tribution for coherent particles.

2.3.1.1. Weak and shearable precipitates. Gerold and Haberkorn [18]
proposed a strengthening model for weak and shearable precipi-
tates based on isotropic elasticity theory. Accordingly, the force F
between a straight dislocation and a spherical coherent precipitate
on a slip plane is

F
z
�r

� �
¼ 4Gbe�rv z

�r

� �
; ð9Þ

With

e ¼ 1
3

1þ t
1� t

� �
Da
a
� 2

3
dj j: ð10Þ

Here, e is the constrained strain produced by the stress free strain of
lattice misfit d [19], a is the lattice parameter of the matrix, �r is the
mean radius of precipitates and Da is the difference between lattice
parameters of matrix and precipitate. v z=�rð Þ is a function depending
on the interaction between the dislocation in the slip plane and
the precipitate. z denotes the distance between the slip plane
and the precipitate center. If the slip plane is located in the center
of the precipitate, z = 0 and the strain field produced by the upper
side of the slip plane is compensated by the lower part. Conse-
quently, the stress force is balanced on the dislocation from two
sides (F = 0). If the slip plane cuts the precipitate away from its cen-
ter, the v z=�rð Þ function increases and reaches a maximum at

v
ffiffiffi
2
p

=2
� �

¼ 1, for edge and at v 1ð Þ ¼ 1=2 for screw dislocations.

The values of the v z=rð Þ function can be expressed by the following
functions for an edge dislocation,

v z
�r

� �
¼ 2

z
�r

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z

�r

� �2
r

if
z
�r

� �2
� 3

4
; ð11Þ

v z
�r

� �
¼ 3

ffiffiffi
3
p

8 z
�r

	 
2 if
z
�r

� �2
� 3

4
; ð12Þ

and for a screw dislocation,

v z
�r

� �
¼ 1

2
z
�r

� �
if

z
�r

� �
� 1; ð13Þ

v z
�r

� �
¼ 1

2 z
�r

	 
2 if
z
�r

� �
� 1: ð14Þ

In consideration of the coherency mechanism, the resistance force
in front of the moving dislocation increases when the dislocation
stays out of the precipitate center defined in Eqs. (11) and (13).
The resistance force decreases smoothly at z=�rð Þ > 1 although there
is no interaction between precipitate and dislocation in the slip
plane as explained by Eqs. (12) and (14).

By applying the Pythagorean mixture law as proposed by Brown
and Ham [8], and combining Eqs. (7) and (9), strengthening due to
the coherency misfit mechanism for weak and shearable precipi-
tates from center of the precipitate up to infinity can finally be
expressed as

s2
Coh;weak ¼

1

b2L2
s 2T

Z 1

0
F3 z

�r

� � dz
�r
: ð15Þ

For an edge dislocation,

sCoh;weak ¼
592
35

G3be3 �rð Þ3

L2
s T p=2ð Þ

 !1
2

; ð16Þ

and for a screw dislocation,

sCoh;weak ¼
9
5

G3be3 �rð Þ3

L2
s T 0ð Þ

 !1
2

: ð17Þ
2.3.1.2. Strong and shearable precipitates. Eq. (15) is used to describe
the effect of coherency strain when the size of the precipitates is
small or the outer cut-off angle is higher than 120�. In the case of
large precipitates, which can bend dislocations to angles below
120�, the Friedel relation, Eq. (6), is no longer valid for Eqs. (15)–
(17). The concept of strong precipitates is also dependent on the
position of the dislocation in the slip plane with respect to the pre-
cipitate (Z value). For example, at Z = 0, a large precipitate acts as
weak and shearable. When the Z parameter is confined between

T= 4Gebð Þð Þ � Z � 31:5Geb �rð Þ3= 4Tð Þ
� �0:5

for edge dislocations, and

T= Gebð Þð Þ � Z � Geb �rð Þ3= Tð Þ
� �0:5

for screw dislocations, precipi-

tates have the capability of producing the bending condition corre-
sponding to a strong precipitate. Precipitation strengthening can
then be expressed by the following equation for an edge disloca-
tion when it is assumed that the free distance between two parti-
cles is close to the non-shearable condition (L � Ls) [8,20] with

sCoh;strong ¼ 2
1
23

3
8

J
Ls

T3 p=2ð ÞGe�r
b3

 !1
4

; ð18Þ

and for a screw dislocation,

sCoh;strong ¼ 2
J
Ls

T3 0ð ÞGe�r
b3

 !1
4

: ð19Þ
2.3.2. Modulus effect
When a dislocation passes through a precipitate, the dislocation

energies inside and outside the precipitate are different due to dif-
ferent chemical composition and/or crystal structure of precipitate
and matrix. In 1962, Siems et al. [21] used Snell’s Law to explain
this mechanism based on the condition

U1 sina1 ¼ U2 sin a2: ð20Þ



Fig. 4. Schematic illustration of ordered coherent precipitates affected by a pair of
dislocations. Precipitate regions, which are affected by dislocation and suffer the
APB effect, are shown in black. (A) Coherent and weak precipitates and (B) coherent
and strong precipitates.
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In this equation, U1 and U2 are the dislocation energy inside the pre-
cipitate and the matrix, respectively. a1 and a2 represent the angles
between the dislocation and the normal of the precipitate/matrix
interface. This is shown schematically in Fig. 3.

In the Siems et al. model [21], the dislocation energy inside the
precipitate is assumed to be lower than that in the matrix (U1 < U2).
In this case, at the final stage of shearing, when the dislocation
wants to escape the precipitate, the breaking angle 2a2 is equal
to Wc and a1 = 90� (compare with Fig. 3(B)). Then,

Wc ¼ 2a2 ¼ 2 sin�1 U1

U2

� �
: ð21Þ

Similar to the case of coherency strengthening, the outer cut-off
angle Wc can be in the range of the weak and shearable or strong
and shearable condition, which is discussed in Section 2.3. Substi-
tuting Eq. (21) into Eqs. (5) and (6) for the weak and shearable con-
ditions, one arrives at [20]

sMod;weak ¼
2T
bLs

1� U2
1

U2
2

 !" #3
4

: ð22Þ

Replacing Wc in Eq. (8) by Eq. (21) for strong and shearable precip-
itates, under the assumption that the free distance between two
particles is close to non-shearable condition (L � Ls) [20], delivers

sMod;strong ¼ J
2T
bLs

1� U2
1

U2
2

 !" #1
2

: ð23Þ

In order to specify the values of U1 and U2 in Eqs. (22) and (23), the
dislocation energy inside the precipitate must be related to the pre-
cipitate radius and energy per unit length of a dislocation in infinite
media of precipitate and matrix. This was done on a numerical basis
by Knowles and Kelly [22], leading to

U1

U2
¼

Ep log rs
ri

E log ro
ri

þ
log ro

rs

log ro
ri

: ð24Þ

In this equation, ro is the outer cut-off distance, ri is the inner cut-off
distance [23] and rs is the equivalent precipitate radius defined in
different models. This will be further discussed later. Ep is the
energy of a dislocation per unit length in infinite media of
precipitate. For a screw dislocation, Ep/E is equal to Gp/G (shear
modulus of precipitate and matrix) and for an edge dislocation,
the ratio reads

Ep

E
¼ Gp 1� tð Þ

G 1� tp
	 
 ; ð25Þ

where tp is the Poisson’s ratio of the precipitate.
In 1983, Nembach [24] considered modulus strengthening

numerically by evaluating the interaction force between a disloca-
tion and a spherical precipitate with different shear modulus from
the matrix. In this model, the maximum interaction force becomes

Fm ¼ x1 Gp � G
�� ��b2 rs

b

� �x2

: ð26Þ

where x1 and x2 are constants representing the dislocation core
energy inside and outside the precipitate. Depending on the models
used in [24], x1 varies between 0.0175 and 0.0722. x2 adopts a
value of 0.81 ± 0.09. By replacing the force in Eq. (7) with Fm in
Eq. (26), the shear stress according to the weak modulus mecha-
nism becomes

sMod;weak ¼
2T
bLs

x1 Gp � G
�� ��b2 rs=bð Þx2

2T

" #3
2

; ð27Þ

and replacing Fm in Eq. (8) by Eq. (26) delivers the equivalent
expression for the strong mechanism as
sMod;strong ¼ J
x1 Gp � G
�� ��b2 rs=bð Þx2

bLs
: ð28Þ

In these formulations, the absolute value of the difference in shear
modules between precipitate and matrix enters the equation. Con-
sequently, this model applies to both situations where the modulus
of the precipitate is larger or smaller as well.

2.3.3. Anti-phase boundary effect
Dislocations entering a particle lead to breaking of chemical

bonds. The rearrangement of chemical bonds into different local
chemical environment leads to strengthening. Generally, this effect
is denoted as chemical strengthening. It is commonly distinguished
between anti-phase boundary, stacking fault and interfacial effects.

If particles in a matrix show chemical ordering, the anti-phase
boundary effect often represents the major strengthening mecha-
nism. When a dislocation passes through an ordered precipitate,
it destroys the periodic atomic arrangement in its slip plane. The
disordered plane, which is left behind, is called anti-phase bound-
ary (APB).

In ordered crystal structures, the shearing dislocations travel in
groups, where the number of dislocations in a group depends on
the type of order structure (e.g. face-centered cubic L12, tetragonal
D022). This observation is important for the interpretation of the
ability of precipitates to restore to the perfect order structure after
the precipitate-dislocation interaction. The first dislocation, which
is denoted as leading dislocation, creates an anti-phase boundary
in the precipitate. The second one, which is called trailing disloca-
tion, compensates the effect of the first one and restores the
ordered structure again. Depending on the size of the precipitate,
we again distinguish two regimes.

2.3.3.1. Weak and shearable precipitates. This regime is operative if
the precipitates are small, i.e. the outer cut-off angle is Wc > 120�.
The disordered precipitates stimulate the trailing dislocations
towards the leading dislocation. This compensates, partly, the
APB strengthening effect of the leading dislocation (see Fig. 4(A)).
The strengthening equation for the APB effect can be expressed
by using Eq. (7) with Fm = 2cAPB rs as
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sAPB;weak ¼
2
s

2T
bLs

2cAPBrs

2T

� �3
2

� bf
rs

Ls

� �( )
: ð29Þ

where cAPB is the anti-phase boundary energy of the precipitate and
b is a constant between 0.0 and 1.0. b is close to 1.0 when the trail-
ing dislocation is straight. s is the number of pair dislocations in the
group and the function f(rs/Ls) corresponds to the pulling tension of
precipitates on the trailing dislocation. It is given as [25]

f
rs

Ls

� �
¼ 16

3p
cAPBr2

s

bL2
s

: ð30Þ
2.3.3.2. Strong and shearable precipitates. When the precipitates are
large, application of Eq. (29) becomes critical because the precipi-
tates produce a high APB force (see Fig. 4(B)). In this situation,
when the leading dislocation travels through the precipitate, the
resistance force of the precipitate, F1, increases with the distance
x in the direction of dislocation movement (see Fig. 5). Conse-
quently, the dislocation tries to increase its line tension force by
decreasing the outer cut-off angle. For small precipitates, this
mechanism could be energetically favorable for the dislocation,
and it can pass through the precipitate. But for larger precipitates,
the line tension force of the dislocation cannot compensate the
high APB force of the precipitate and the dislocation becomes stuck
inside the precipitate in position x1 = xm and F1 arrives to the max-
imum Fm = F1 = �cAPB d(x1).

Analogous to the weak and shearable treatment of structural re-
ordering, the trailing dislocation is attracted by the precipitate.
This has two effects on the leading dislocation. Firstly, it recon-
structs the ordered structure of the precipitate, which produces a
force with opposite sign of F1 on the leading dislocation, which is
F2 = +cAPB d(x2). This stimulates the leading dislocation to go for-
ward. Secondly, it generates a repulsive force due to the elastic
interaction between dislocations. Gleiter and Hornbogen [26] have
described the elastic interaction force between two strongly paired
dislocations as

RAPB ¼ V
Gb2

2p
d xmð Þ

xm
; ð31Þ

where RAPB is the elastic interaction force between two strongly
paired dislocations. V is a parameter introduced for remaining dis-
location segments incorporating also some other uncertainties. Its
value is assumed to be 2.8 in Ref. [27]. F2 and RAPB drive the leading
dislocation to move and shear the precipitate. In this regime, the
maximum shear stress occurs when Fm = F1 and F2 = 0.

Finally, Hüther and Reppich [28] obtained a general expression
for strong and shearable ordered particles as
Fig. 5. Interaction between leading and trailing dislocations with a precipitate
where the area between dislocations is a disordered region (APB).
sAPB;strong ¼
2VT
pbLs

� �
pcAPBrs

VT
� 1

� �1
2
: ð32Þ
2.3.4. Stacking fault effect
In some crystalline materials, the dislocation energy of a single

dislocation can be reduced by dissociation into two partial disloca-
tions. This process leads to a stacking fault (SF) in the slip plane
between the partial dislocations 1 (P.1) and 2 (P.2). When the
stacking fault energy (SFE) of the precipitate is lower than that of
the matrix, the width of the ribbon band between two partials
inside and outside of the precipitate differs. This difference pro-
duces a retarding force in front of the dislocation movement, which
depends on the precipitate size and the width of the stacking fault
in the matrix Wm and inside the precipitate Wp. In Fig. 6, Wm and
Wp are displayed for the cases where the dislocation is free from
external tension (left side) and where the dislocation is under
external tension (right side). In Fig. 6a, the precipitate is located
between P.1 and P.2 in tension-free condition, where Wm and Wp

are wider than the equivalent precipitate diameter (2rs). In
Fig. 6. Distance between two partial dislocation inside and outside a precipitate for
the cases where the dislocation is free or under external tension. (a) Equivalent
precipitate diameter (2rs) is smaller than the width of the stacking fault in matrix
Wm and in precipitate Wp, (b) Wp + Wm > 2rs > Wm and (c) 2rs > Wm and Wp.
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tension-free condition of Fig. 6b, P.1 and P.2 touch two sides of pre-
cipitate where 2rs is smaller than Wp + Wm and larger than Wm.

By applying external tension on dislocations, in both cases
defined in Fig. 6a and b, the precipitate resistance force increases
due to the P.2 displacement and reaches its maximum at the pre-
cipitate center (right side of Fig. 6a and b). The maximum resis-
tance force for these two conditions is,

Fm ¼ 2rs cSFM � cSFPð Þ; ð33Þ

where (cSFM � cSFP) is the difference between the stacking fault
energies of the matrix and the precipitate. Replacing Eqs. (7) and
(8) by Eq. (33) delivers the stacking fault strengthening for weak
and strong precipitates with

sSF;weak ¼
2T
bLs

rs cSFM � cSFPð Þ
T

� �3
2

; ð34Þ

and,

sSF;strong ¼ J
2rs cSFM � cSFPð Þ

bLs
: ð35Þ

Fig. 6c depicts the interaction between precipitate and partial dislo-
cations, when 2rs is larger than Wp and Wm. The length of partial
dislocation 2 inside the precipitate (dSF) defines the maximum pre-
cipitate resistance force when P.1 is still located along the circum-
ference of the precipitate. Hirsch and Kelley [29] derived the
maximum force as

Fm ¼ 2 cSFM � cSFPð Þ Weff rs �
W2

eff

4

 !1
2

; ð36Þ

Weff ¼
2K hð Þ

cSFM þ cSFPð Þ ; ð37Þ

K hð Þ ¼
Gb2

p 2� tð Þ
8p 1� tð Þ 1� 2t cos 2hð Þ

2� tð Þ

� �
; ð38Þ

Weff is the distance between P.1 and P.2, when P.1 is located at the
precipitate circumference, K(b) is the elastic energy per unit length
between two partial dislocations and bp is the magnitude of the Bur-
gers vector in the precipitate. If we replace Fm in Eq. (7) by Eq. (36),
we finally obtain the yield stress increment for the weak mecha-
nism as

sSF;weak ¼
2T
bLs

cSFM � cSFPð Þ Weff rs �W2
eff =4

� �1
2

T

2
64

3
75

3
2

: ð39Þ

Replacing Eq. (8) by Eq. (36), the expression for the strong regime is
found as

sSF;strong ¼ J
2 cSFM � cSFPð Þ Weff rs �W2

eff =4
� �1

2

bLs
: ð40Þ
Fig. 7. Interaction between an edge dislocation with an array of non-shearable
precipitates.
2.3.5. Interfacial effect
When a dislocation cuts a coherent precipitate, two new ledges

forms. One is created after entering the precipitate, the other one
after leaving it. These ledges cause an increment in the interfacial
area in these regions. The maximum force related to this mecha-
nism is expressed by Fm = 2 cIFE b [9], where cIFE is the energy of
the precipitate-matrix interface created by dislocation slip. Replac-
ing Fm in Eq. (7) delivers

sChem;weak ¼
2T
bLs

cIFEb
T

� �3
2

: ð41Þ
for the weak and shearable mechanism and if the operative
strengthening regime is strong and shearable, we replace Fm in
Eq. (8) and arrive at

sChem;strong ¼ J
2cIFEb

bLs
: ð42Þ
2.4. Non-shearing mechanism

Ashby [7] suggested a widely used expression for the ultimate
shear stress related to non-shearable precipitates. He introduced
simplifying assumptions for the outer cut-off distance of the pre-
cipitate into the original Orowan equation and, furthermore, made
assumptions on the dislocation character. Ashby considered the
exact shape of the dislocation when a dislocation approaches a
Frank-Read configuration between two precipitates. In this situa-
tion, which is shown in Fig. 1, the dislocation escapes the precipi-
tate as soon as the outer cut-off angle reaches an angle of W = 0.
Then,

sOrowan ¼ J
2E p=2� hð Þ

bLs
: ð43Þ

Fig. 7 illustrates the interaction between an edge dislocation (h = p/
2) with an array of strong precipitates in the dislocation slip plane.
In step 1, the external tension is assumed to be zero and the dislo-
cation is located straight behind a line of precipitates. By increasing
the external tension in step 2, the dislocation bends between the
precipitates to circular or elliptical shape. In this process, the dislo-
cation character changes from edge to screw in point n because the
dislocation line becomes parallel to the Burgers vector in this point.
In Eq. (43), E(p/2 � h) is used instead of E(h) because the original
dislocation has opposite character at point n compared to point
m. Analogously, if the original dislocation has screw character at
point m (h = 0), the dislocation character at the adjacent precipitate
is edge (h = p/2). In step 3, the dislocation escapes the first array of
precipitates when the external tension is further increased and the
initial dislocation character is restored. This condition represents
the physical basis of the final shear stress expression in the Ashby
model. Brown and Ham [8] approximated the condition of ran-
domly distributed obstacles and reformulated Eq. (43) as,

sOrowan ¼ J
2 E 0ð Þ:E p=2ð Þ½ �0:5

bLs
: ð44Þ

Insertion of Eq. (1) with h = 0 and h = p/2 in Eq. (44) restores the
well-known Orowan equation, which is,
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sOrowan ¼
JGb

2p
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t
p

Ls

ln
2rs

ri

� �
: ð45Þ
3. Discussion

The present set of strengthening equations shows that the max-
imum shear stress before yielding depends on the dislocation line
tension T, the mean distance between two particles, the precipitate
resistance force F, which is a function of precipitate radius or outer
cut-off distance, and the particular strengthening mechanism. In
contrast, conventional strengthening equations are often functions
of the mean radius, phase fraction as well as physical and some
coefficients [6–9,18,20,24–26,30]. When substituting the actual
precipitate distribution by only the mean radius and phase fraction
of precipitates, the calculated yield strength increments can
become substantially different from experimental results. The dif-
ferences usually arise from simplifications in the development of
the strengthening equations. The most prominent are listed in
Fig. 8.

For a predictive simulation of the total shear stress, we propose
to refine the values of input variables instead of changing and
adapting phenomenological coefficients in order to close the gap
between experimental and simulation results. In a survey for eval-
uation of final yield strength in binary Ni–Al system, Ardell and
Huang [32] have listed eight different values between 0.129 J/
m�2 and 0.188 J/m�2 for the anti-phase boundary energy (cAPB) of
c’ from different references, while Douin et al. [33] measured
cAPB = 0.111 J/m�2 by using weak-beam electron microscopy.

In the present model, we have connected strengthening equa-
tions to the incipient physical parameters, which are varying dur-
ing aging and we have avoided unnecessary simplifications
commonly used in conventional models. This is discussed in detail
subsequently.

3.1. Non-spherical precipitates

In some precipitation strengthening systems, for instance,
Al–Mg–Si, Al–Cu, Al–Cu–Mg, Al–Zn–Mg and some nickel-base
Fig. 8. Evolution of yield strength equatio
superalloys (Inconel 718, Rene 62, Udimet 630), precipitates are
non-spherical. For these cases, the conventional strengthening
equations are not applicable and it is difficult to advance these
equations while being based on phenomenological parameters.
Three different approaches are reported in literatures to simulate
the yield strength for non-spherical precipitates:

(i) Myhr et al. [34] assumed that prolate precipitates are spher-
ical in Al–Mg–Si system and applied conventional strength-
ening equations, thus simply ignoring the shape effect.

(ii) Nie and Muddle [35] modified the Orowan equation, Eqs.
(44) and (45), for cylindrical disc shape precipitate in Al–
Cu–Sn system by using a stereological method. They
assumed that the aspect ratio is higher that 40 (diameter/
thickness) and simulated the yield strength increment based
on this assumption. In their model, they assumed that the
precipitates are not shearable at all and ignored all shearing
mechanisms. This model can be developed for rod shape
precipitates in aluminum and magnesium alloys, too [36,37].

(iii) Computer simulations of moving dislocations in their slip
plane were used in the method of Zhu and Starke [38],
where the moving dislocations are crossing rod-shape parti-
cles elongated in h100i direction or circular platelet parti-
cles extended in the {100} planes [39–41]. Similar to Nie
and Muddle [35], this method does not account for the case
of coherent and shearable precipitates.

In our approach, as outlined in Section 2, the strengthening
equations are functions of physical parameters only, which can
straightforwardly be advanced for prolate and oblate precipitates
considering all shearing and non-shearing strengthening mecha-
nisms [11,31]. This task is performed in another work by the pres-
ent authors.

3.2. Dislocation line tension

The dislocation line tension varies in the course of particle aging
processes due to changes in the mean free distance between two
particles along the dislocation line and the angle between the
ns in conventional and ideal model.



Fig. 9. (A) The interfering region between a precipitate and the dislocation slip
plane, (B) planar radius in model of Ardell [9] and (C) radius of circular section in
slip plane in model of Brown and Ham [8].
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dislocation line with the Burgers vector h due to the dislocation
bending behind a particle [42].

In the early stages of aging, precipitates are weak and the dislo-
cation character remains unaffected when the dislocation is nearly
straight. Once the precipitates grow, the dislocation character
changes during bending behind the strong precipitates. Dieter
[42] measured the dislocation energy per unit length based on
Eq. (1) in annealed crystals. He assumed that ro = 10�7 m and
ri = 2 � 10�10 m; then ln(ro/ri) � 2p. After replacing the parameters
for outer and inner cut-off distance and using t = 1/3, the resulting
dislocation energies for screw and edge dislocations become
E(0) = (1/2)Gb2 and E(p/2) = (3/4)Gb2, respectively. In the same
way, using Eq. (3), the dislocation line tension for screw and edge
dislocations are T(0) = Gb2 and T(p/2) = (1/4)Gb2, respectively. In
contrast, Ardell [9] proposed ln(ro/ri) � 4 at peak strength. These
different assumptions in conventional models produce rather large
differences in the absolute value of the strengthening effect, thus
indicating that the dislocation line tension is a critical parameter
for precipitation strengthening. For simulation of the yield
strength, the dislocation line tension is proposed to be T = (1/
2)Gb2 in Refs. [8,9,18,20,23,28,29,41].

In practical simulation, accurate result can only be obtained
after performing a thorough characterization of the dislocation
character, which is a mixture of edge or screw, and by accurately
determining the free distance between two particles. Both these
parameters are dynamic in nature and vary during aging.

3.3. Free distance between two precipitates

The free distance between two particles is a crucial input quan-
tity in precipitation strengthening theory. In his early model,
Ashby [7] assumed that all precipitates have the same size and that
they are distributed on a square array without preferential point
for nucleation. Based on these assumptions, the free distance
between two precipitates, Ls,c, is represented in the following
manner [7],

Ls;c ¼
1ffiffiffiffiffiffi
Ns
p � 2rs

� �
; ð46Þ

where Ls,c is the surface to surface distance between two particles
located in the square arrangement and Ns is the number of particles,
which intersect unit area of slip plane. The relation between Ns and
the number of particles per unit volume of the matrix, Nv, is

Ns ¼ 2 r Nv: ð47Þ

Whereas the square array is a reasonable approximation of the real
situation for many alloy systems, in other precipitation hardening
materials, such as aluminum alloys AA2xxx and AA6xxx or c’’-hard-
ened superalloys, precipitates nucleate in a close-packed triangular
array [43]. In this case, Ls,c should be modified to the following form,
where the surface to surface distance between two particles located
in triangular arrangement, Ls,t, is

Ls;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2=

ffiffiffi
3
pq

ffiffiffiffiffiffiffiffiffiffiffi
2rNv
p � 2rs

2
4

3
5: ð48Þ

In general, strengthening models based on Eqs. (46) and (48) (see
the work of Russel and Brown [20], Kelly [44] and Fullman [45])
are physically correct. However, their accuracy decreases for small
particles with r < 0.04 �r, where �r is the mean radius of precipitates.
Moreover, when being applicable for r < 0.04, the results are not sat-
isfying at �r. The phase fraction of precipitates has a similar effect on
the free distance of two particles. In a numerical analysis, Sondereg-
ger et al. [10] simulated the shearing of particles in the dislocation
slip plane for 105 randomly distributed precipitates in 100 size
classes in volume. They calculated the free distance distribution
between two particles by varying radius at constant phase fraction
and vice versa. Their simulation result showed that the deviation
from numerical simulation could be 70% and more for the classical
models.

These authors presented an alternative model for arbitrary pre-
cipitate size and randomly distributed particles in a matrix. In this
model, precipitates are divided into discrete size classes. Each class
contains precipitates from within a specific radius interval, rc, and a
number density of particles, nv,c. A general formulation for the free
distance between two particles in the slip plane is derived as

Ls ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 3

2p
P

cnv ;crc
þ ð2rssÞ2

s
� 2rss; ð49Þ

And

rss ¼
ffiffiffi
2
3

r P
cnv ;cr2

cP
cnv;crc

: ð50Þ

where rss is the mean projected radius. The Sonderegger et al. model
delivers more accurate results for various size distributions and dif-
ferent phase fractions. The difference in free distance between two
particles obtained from Eq. (49) and a numerical analysis of 105 ran-
domly distributed precipitates in 100 size classes described in Ref.
[10] is in all cases less than 30%.



Fig. 10. Simulation of (a) phase fraction of precipitate, (b) surface-to-surface
distance between two particles in weak and shearable mechanism Leff and in strong
mechanism Ls and (c) dislocation line tension force in weak and strong mechanisms.
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3.4. Equivalent radius

The spatial extension of the interfering part between a disloca-
tion and a precipitate, the so-called equivalent radius, varies
between 0 and the radius of the precipitate (Fig. 9A). There are
two approaches to measure the equivalent radius, one by Ardell
[9] and the second by Brown and Ham [8]. Ardell considered the
projection of the precipitate onto a plane perpendicular to the slip
plane of the dislocations. The resulting geometric figure is a circle
with radius r and area pr2 (Fig. 9B). Ardell then replaced this circle
by a rectangle with the same area and same height in z direction.
The average planar radius in this model is then

rs;a ¼
p
4

�r: ð51Þ

In the Brown and Ham approach, illustrated in Fig. 9C, the volume
effect is taken into account. Brown and Ham replaced the spherical
precipitate by a cylindrical precipitate with the same volume (4/3
pr3) and same height in z direction. The mean radius of the circular
section in the dislocation slip plane in this model is [8,30]

rs;b ¼
ffiffiffi
2
3

r
�r: ð52Þ

The difference between the equivalent radii of precipitates rs,a and
rs,b in these two models is about 3.9%.

3.5. Strengthening mechanisms

During aging of a supersaturated alloy, nuclei of small particles
initially grow until they finally coarsen by the mechanisms of Ost-
wald ripening and/or particle coalescence. As particle radii, phase
fractions, precipitate free distances and number densities change
in the course of precipitate evolution, so do their contributions to
different strengthening mechanisms.

3.5.1. Phase fraction, free distance between precipitates and
dislocation line tension

Fig. 10 illustrates changes in phase fraction (f), free distance
between two precipitates along dislocation line (Ls, Leff) and line
tension (T) of an edge dislocation for cases where the number den-
sity of precipitates is held constant and the precipitate radius
increases with aging time. The utilized values in this evaluation
are summarized in Table 1.

Fig. 10a shows the phase fraction of precipitates in this system,
which increases with aging time. In Ref. [9], Ardell defines a critical
value for the validity of the shearing equations when the phase
fraction of precipitate is lower than 40%. In this example, the phase
fraction reaches 40% when the precipitate radius is approximately
70 nm.

The solid line in Fig. 10b shows changes in the surface-to-sur-
face distance between two strong particles, Ls, as a function of pre-
cipitate size. Ls is equal to Lc,c (center-to-center distance between
two precipitates) when the equivalent radius is almost zero. In this
example, Ls decreases linearly from 0.3 lm to 0.1 lm by increasing
precipitate size from 0 to 100 nm during precipitate coarsening. Ls

is independent of the type of strengthening mechanism, whereas
Leff depends on the maximum resistance force Fm and dislocation
line tension in different strengthening mechanisms. The dash line
in Fig. 10b shows virtual values for Leff based on Eq. (6) in the
coherency mechanism. In the same way, virtual values for Leff can
be calculated for other strengthening mechanisms. We can calcu-
late a real Leff value if we define the total force of different mecha-
nism as explained in Section 2.3.

Replacing ro in Eq. (3) by Ls delivers the dislocation line tension,
T, which is illustrated by the solid line in Fig. 10c. The dash line in
Fig. 10c represents the virtual line tension of dislocations when the
operative mechanism is coherency strengthening.



Table 1
Physical and chemical parameters of the virtual matrix and
precipitate, which are used for the strengthening simula-
tions in Figs. 10 and 11.

Parameters Values

b = bp (nm) 0.25
J 1
G (GPa) 79.3
Gp (GPa) 70.0
Lc,c (nm) 300
ri (nm) 2 b
S 2
e 0.001
cAPB (J m�2) 0.04
cIFE (J m�2) 0.5
cSFM (J m�2) 0.1
cSFP (J m�2) 0.05
m 1/3
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In all weak strengthening equations, except for the chemical
effect, the precipitate resistance force increases with precipitate
size. This causes a decrease in Leff and T. In Eq. (6), Leff is a function
of T/Fm and, in Eq. (3), T is a function of Leff. Eqs. (3) and (6), there-
fore, express the observation that Leff and T are interdependent
functions that change gradually with precipitate size.

Based on the present parameterization, we next analyze the role
of changing precipitate radii for the simulated shear stress in dif-
ferent strengthening mechanisms.

3.5.2. Coherency effect
In the analysis of the coherency effect, which represents the

interaction of the moving dislocation with the stress field gener-
ated by the lattice misfit between precipitate and matrix, we
observe an increase of precipitation strengthening with increasing
radius. In the model of Gerold and Haberkorn [18], the yield
strength increment is caused by the strain field in z direction,
which is the distance between the slip plane and the precipitate
center. The strain fields along the dislocation line direction y and
the direction of dislocation movement x does not influence the
maximum resistance force in Eq. (7) (see Fig. 9A).

The weak and shearing regime of coherency strengthening is
valid when the outer cut-off angle is 120� 6Wc 6 180�. With
increasing precipitate radius, the maximum resistance force of
the precipitate on the dislocation increases and the outer cut-off
angle decreases. Then, the strengthening mechanism shifts from
the weak and shearing regime (Eqs. (16) and (17)) to the strong
and shearing regime (Eqs. (18) and (19)). In the weak and shearing
regime, the strengthening effect strongly depends on the precipi-
tate radius. When the strong and shearing mechanism is operative,
an increase of the particle radius has a weaker effect. The critical
particle size for transition, �r, from Eq. (16) to Eq. (18) for an edge
dislocation is [8],

�re;crit;weak ¼
J0:8

4p
350:430:3

2960:4

1� 2t
1� t

� �
ln

Leff

ri

� �
b
e
; ð53Þ

and for a screw dislocation,

�rs;crit;weak ¼
J0:8

4p
200:4

90:4

1þ t
1� t

� �
ln

Leff

ri

� �
b
e
: ð54Þ

Interestingly, the critical radius for transition from the weak to the
strong mechanism of a screw dislocation is approximately 10 times
higher than that of an edge dislocation when t = 1/3. This is obvious
from comparison of Eqs. (53) and (54).

The regime defined by the strong and shearable mechanism is
an intermediate mechanism between the weak and shearing
mechanism and the Orowan mechanism. In some alloy systems,
where the lattice misfit of precipitate and matrix is high, this
regime becomes a virtual mechanism because the strengthening
value obtained from Eqs. (18) and (19) is above the value given
by the Orowan Eq. (43).

When the precipitate size increases during aging, the precipi-
tates either lose coherency and become incoherent or they become
so strong that they cannot be sheared any longer. The point, where
the strengthening mechanism is converted from shearing to Oro-
wan is reached when the outer cut-off angle Wc reaches almost
to zero and Fm = 2T. The transition criterion from shearing mecha-
nism to Orowan mechanism for an edge dislocation is given by [8],

�re;crit;strong ¼
1

8p
1� 2t
1� t

� �
ln

Ls

ri

� �
b
e
; ð55Þ

and for a screw dislocation,

�rs;crit;strong ¼
1

4p
1þ t
1� t

� �
ln

Ls

ri

� �
b
e
: ð56Þ

Eqs. (55) and (56) define a criterion for the transition radius from
shearing to non-shearing, which is applicable for shear and strong
equations in all the strengthening mechanisms. For the coherency
mechanism, the maximum resistance force in front of the disloca-
tion occurs outside the precipitate and the other strengthening
effects such as APB, chemical and stacking fault effects, will be acti-
vated during the interaction between dislocation and precipitate.
For the precipitates, which are larger than the critical radius men-
tioned in Eqs. (55) and (56), the strengthening mechanism is Oro-
wan, although other strengthening mechanisms indicate that
shearing mechanisms should be operative.

In Fig. 11(a–e), the weak and shearing regime and the strong
and shearing regime in all strengthening mechanisms are dis-
played for interaction between precipitate and edge dislocation.
The values utilized in the evaluation of different strengthening
mechanisms are mentioned in Table 1.

3.5.3. Modulus effect
In the Siems et al. model [21], the shear stress generated by the

modulus effect increases strongly up to a precipitate radius of 10�ri.
For larger radii, however, the modulus effect becomes almost inde-
pendent of radius [24] (see Fig. 11b). In this model, which is valid
for precipitates with lower shear modulus than the matrix, the
strengthening weak Eq. (22) does not intersect the strong Eq.
(23) and there is no transition radius from weak to strong mecha-
nisms and Orowan mechanism. This result is in conflict with other
strengthening mechanisms and models, which show a gradual
change from weak to strong regimes.

In the Nembach model [24], the total shear stress increases
monotonously. As shown in Fig. 11b, the weak mechanism is
replaced by the strong mechanism as soon as the precipitate radius
is approximately 40 nm. In many precipitation strengthening sys-
tems, the modulus effect is a weak strengthening mechanism com-
pared to the coherency and APB effects [24]. But, in the Fe–Cu
system, for instance, it is assumed to be the dominant mechanism
[46].

For the calculation of the overall yield strength, we considered
Eq. (27) for the weak and shearable effect and Eq. (28) for the
strong and shearable effect.

3.5.4. Anti-phase boundary effect
An APB is a planar defect occurring in chemically ordered pre-

cipitates. Fig. 11c shows the effect of APB strengthening for an edge
dislocation based on Eqs. (29)–(32). At the early aging stage, the
weak and shearing equation is controlling the strengthening
regime. The weak and shearing regime is smoothly replaced by
the strong and shearing during aging. In contrast to the coherency



Fig. 11. Analysis of different weak and strong strengthening regimes for edge dislocations based on physical and chemical parameters defined in Table 1. The plots define (a)
coherency effect, (b) modulus effect, (c) APB effect, (d) stacking fault effect and (e) interfacial effect. Plot (f) shows the combination of all the weak and strong strengthening
mechanisms in plots (a–e) with the Orowan mechanism.
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effect, where the maximum force between dislocation and precip-
itate depends on the position of the slip plane relative to the
precipitate center. Here, the maximum force depends on the
interplay between the energy of the swept area (see Fig. 5) and



Fig. 12. Combination of different strengthening weak mechanisms (WM) and strong mechanisms (SM) in a single or multi-particle system.
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the distance between the leading and trailing dislocations. In
ordered precipitates, the APB effect is often as strong as the coher-
ency effect.
3.5.5. Stacking fault effect
When the stacking fault energy of precipitate and matrix are

low, Eqs. (34) and (35) are the operative strengthening equations
because the ribbon band between the two partial dislocations
(P.1 and P.2) is wider than the precipitate diameter. During aging,
the precipitate size increases and becomes larger than the ribbon
band. Then, Eqs. (39) and (40) deliver more accurate results, partic-
ularly at the peak of the yield strength. Fig. 11d displays the shear
stress increment due to the stacking fault effect as proposed in Eqs.
(39) and (40). Similar to the other strengthening mechanisms, the
weak regime is replaced by the strong regime above a specific pre-
cipitate size. This mechanism has often a minor effect on the final
yield strength compared to the other mechanisms.
3.5.6. Interfacial effect
The interfacial effect has generally the weakest effect in precip-

itation hardening of shearable precipitates. Fig. 11e illustrates the
magnitude of chemical strengthening in weak and strong regimes
based on Eqs. (41) and (42). Unlike other strengthening mecha-
nisms, chemical strengthening is the independent of precipitate
size and increases by Leff and Ls decrement, only.
3.6. Superposition of strengthening mechanisms

In precipitation-strengthened multi-component and/or multi-
phase materials, the different nature and size of particles will lead
to a situation where the total strengthening effect is given by a
mixture of different strengthening mechanisms. Even with just
one kind of precipitate, a distribution of particle sizes in different
slip planes of dislocations must be expected, thus also representing
a situation where each precipitate has different strengthening
potential and the total strength contribution must in some way
be superposed.

For a prediction of the combined effect of all individual
strengthening contributions, several investigations have been per-
formed and various approaches exist [8,9,47–49]. The basic result
of these studies can be lumped up in the superposition expression

sq
total ¼

Xn

i¼1

Dsq
i ; ð57Þ

where q is an exponent, which commonly lies between 1 and 2. Eq.
(57) delivers the shear stress of a precipitation-strengthened mate-
rial with a mixture of operative strengthening mechanisms.

Numerical studies of Forman and Makin [50] for two types of
obstacles with the same strength provide good agreement to the
overall strength with a value of q = 2 (Pythagorean superposition).
The same result is also proposed by Koppenaal [49]. In another
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investigation, Ardell [9] applied computer simulations to deter-
mine the value of q for a mixture of two randomly distributed pre-
cipitate populations with distinct strength. He proposed that, for a
combination of just weak mechanisms (WM) or just strong mech-
anisms (SM), q should be chosen close to 1.8. Otherwise, when two
different mechanisms of weak and strong type are acting together,
q should be given a value close to 1.4. Merging of weak and strong
mechanisms in a multi-particle system (1,2, . . .) is demonstrated in
Fig. 12 for the simple case of two particles.

In this figure, the q value for weak and shearable mechanism
and strong and shearable mechanism is approximately 1.8. The
operative strengthening mechanism for a specific precipitate is
the one with lower strength among weak mechanism (WM), strong
mechanism (SM) and Orowan mechanism. When there are differ-
ent particles in the matrix, we can use the mixture law of Ardell
[9]. As shown in the flowchart, q is 1.8 when the operative
strengthening mechanism in different particles is WM. In the same
way q is 1.8 when the operative strengthening mechanism in dif-
ferent particles is SM or Orowan mechanism. For the combination
of WM with SM or Orowan mechanism q is 1.4. In the present
study this procedure is utilized for superposition of all shearable
and non-shearable effects including coherency, modulus, APB,
stacking fault and interfacial effects. Fig. 11f displays the total yield
strength in a material containing virtual precipitates defined in
Table 1. This plot, which combines the contribution of different
strengthening mechanisms as demonstrated in plots Fig. 11(a–e),
describes weak mechanism as an operative mechanism for precip-
itate smaller than rs = 30 nm. For coarser precipitate up to rs =
75 nm, the operative mechanism is strong and shearable. The
Orowan mechanism controls the final yield strength when the
precipitate is larger than 75 nm.

4. Summary

In this paper, we review and discuss classical strengthening
models for both, shearing and non-shearing, mechanisms. Where
possible, these approaches are modified on basis of recent progress
in modeling of essential input parameters for precipitation
strengthening with the goal of making the strength predictions
more quantitative and accurate.

The proposed equations are established on basis of physical
input parameters. These are, among others, dislocation character,
precipitate radius, outer cut-off distance and mean free distance
between precipitates. Phenomenological parameters are widely
avoided, thus increasing accuracy and predictability of the equa-
tions. The various strengthening equations are consistent among
each other, since they are developed on basis of the same set of
fundamental governing equations.

A procedure is proposed to identify the operative strengthening
mechanism(s) for each individual precipitate from the analysis of
strength contributions of the different individual shearing and
non-shearing mechanisms. Finally, we suggest how to combine dif-
ferent strengthening mechanisms in complex systems to obtain
the final yield strength of multi-phase, multi-particle materials.
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a b s t r a c t

In precipitation strengthening of non-spherical precipitates, the effective radius is depending on the
relative orientation between particle and the direction of dislocation movement. Expressions for the
equivalent precipitate radius applicable to particle shearing and non-shearing mechanism are derived for
ellipsoidal particles taking into account their growth direction and the dislocation character (edge and
screw). The results are compared to spherical particles and presented in the form of closed analytical
correction factors.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In precipitation hardening, the yield strength of materials
increases because dispersed precipitates impede dislocation
movement. A mathematical formulation has been introduced by
Orowan in 1944 [1], and discussed by Ashby [2] and Brown and
Ham [3] in more depth. The following expression holds,

τOrowan ¼
Gb

2π
ffiffiffiffiffiffiffiffiffiffiffi
1�υ

p 1
λss

ln
Req

ri

� �
; ð1Þ

where G is the shear modulus, υ is Poisson's ratio, ri is the inner
cut-off radius, Req is the outer cut-off radius, which is the average
planar particle diameter for non-shearable particles, and λss is the
surface to surface distance between two particles. Orowan, Ashby,
and Brown and Ham assume an equal number of edge and screw
dislocations in their work.

Eq. (1) is applicable for hard, spherical and non-coherent
particles without lattice continuity between precipitates and
matrix. In this case, dislocations by-pass the precipitates and
produce a dislocation loop around them.

In the case of non-spherical and non-shearable precipitates,
Zhu and Starke [4] proposed strengthening equations for rod-
shaped precipitates oriented in 〈100〉 direction and circular plate-
lets extended in {100} planes. This model is based on computer
simulations of moving dislocations in the precipitate crossing slip
plane. Later, this method was widely used for simulation of
precipitation strengthening of non-spherical precipitates in alu-
minum alloys [5–7]. Nie and Muddle [8] modified Eq. (1) by
applying stereological method for triangular precipitate arrange-
ment. In that model, precipitates are treated as cylindrical discs in
the slip plane of fcc when the precipitate aspect ratio (thickness/
diameter) is lower than 1/40. The stereological method is also
applied for different precipitate orientations in fcc aluminum
alloys [9] and for rod-shaped precipitates in hcp magnesium [10].

When dislocations interact with a coherent and shearable
precipitate, they can pass through it, because atomic lattice
continuity remains intact at the precipitate–matrix interface.
During different shearing stages, a number of effects due to the
dislocation-particle interaction can occur, which are (i) coherency
strengthening due to lattice misfit, (ii) modulus strengthening (iii)
anti-phase boundary strengthening, (iv) stacking fault strengthen-
ing and (v) interfacial strengthening. These effects lead to a
resistance force F in front of the dislocation movement, which
leads to dislocation bending. When the bending angle between
two sides of the dislocation line behind a precipitate is between
1801 and 1201, this precipitate is denoted as “weak”. Brown and
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Ham [3] and Ardell [11] analyzed the shear stress increment of
weak precipitates for point obstacles as defined by Friedel [12],
which are randomly distributed in the matrix. The strengthening
equation for weak and shearable precipitates reads [11]

τshear ¼
2T
bλss

FðreqÞ
2T

� �3
2

; ð2Þ

FðreqÞ ¼ krmeq; ð3Þ

where T is the dislocation line tension, F(req) is the resistance force
in different shearing mechanisms in front of dislocation move-
ment, req is the equivalent radius of the particle in the slip plane
and m is a constant in the range of 0–1. m is equal to one for anti-
phase boundary and stacking fault effects [11]. It is equal to zero
for the interfacial effect, which shows that this mechanism is
independent of precipitate radius. For modulus strengthening, an
intermediate m value is proposed between 0.72 and 0.90 [13], k is
a constant depending on physical and chemical properties of
the precipitate. This parameter is kint ¼ 2 γintb for the interfacial
effect, where γint is the interfacial energy of the precipitate,
ksf ¼ 2jγsfm�γsfpj for the stacking fault effect, where γsfm and γsfp
are the stacking fault energy of matrix and precipitates, respec-
tively, kmo ¼ 0:05jG�Gpjb2�m for the modulus effect, where Gp is
the shear modulus of the precipitate and kapb ¼ 2γapb for the anti-
phase boundary effect, where γapb is the anti-phase boundary
energy of the precipitate [11]. In spherical homogeneous precipi-
tates, the physical and chemical properties are identical in all main
crystallographic directions. This means that the interaction
between precipitate and dislocation is independent of slipping
direction and dislocation edge or screw character. In inhomoge-
neous precipitates, different length of lattice parameters promotes
preferential growth in different directions, which leads to the
formation of non-spherical precipitates. Even though, in this case,
k depends on the orientation of the precipitate with respect to the
slipping direction of edge or screw dislocations. In the present
work, we consider k as a constant for each strengthening mechan-
ism. This model excludes coherency strengthening, because in this
effect, the maximum resistance force in front of the dislocation
movement occurs outside the precipitate and it is independent of
the length of the dislocation inside the precipitate. The yield
strength increment due to the coherency effect depends on the
position of the slip plane with respect to the precipitate center and
we will discuss on this effect in a separate paper.

In the point obstacle model of Friedel [12], λss is equal to the
center to center distance between two particles λcc. For the
realistic case of a precipitate with finite size, the final shear stress
evaluated by Eq. (2) is higher than that for a point obstacle
precipitate. This means that Eq. (2) requires a correction for
precipitates with finite size. Ardell [11] modified Eq. (2) by
subtracting the maximum length of a dislocation inside the
precipitate from the center to center distance between two
particles, which is λss¼λcc�2rs.

Eqs. (1)–(3) show that the final shear stress is a function of the
free distance λss between two precipitates and req or Req, if one
assumes that the resistance force of the precipitate does not
influence the dislocation character during interaction, i.e., T
remains constant. In this study, we apply Eqs. (1)–(3) for non-
spherical precipitates and analyze the interaction between non-
spherical precipitates with screw or edge dislocations similar to
the Ardell's assumptions [11] for spherical precipitates.

1.1. Free distance between precipitates

Sonderegger and et al. [14] proposed a model for the free
distance between precipitates with arbitrary size and random
distribution. In this model, precipitates are divided in different

classes. Each class i contains particles with specific mean radius rv,i
and a number density nv,i. A general formulation for the free
distance between two particles in the slip plane is derived as

λss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 3
2π∑

i
nv;irv;iþð2rsÞ2

vuut �2rs; ð4Þ

with

rs ¼
ffiffiffi
2
3

r ∑
i
nv;ir2v;i

∑
i
nv;irv;i

ð5Þ

Eqs. (4) and (5) are established for spherical particles. For ellipsoid
precipitates in fcc structure, Sonderegger and Kozeschnik [15]
introduced a correction factor for λss, depending on a shape factor
h, as

λss;ell ¼ h
1
6

2þh2

3

 !� 1
4

λss; ð6Þ

h¼ c
a
; ð7Þ

where λss,ell is the free distance between two ellipsoidal precipi-
tates and replaces λss for spherical particles. c is the half axes of the
particle parallel to its rotational axes and a is the according half
length perpendicular to the rotational axes. In this model, pre-
cipitates can be rotational needle-shaped ellipsoids (prolate),
which are elongated in 〈100〉 directions, or rotational lens-
shaped ellipsoids (oblate) elongated in {100} planes. In case of
ellipsoids, r denotes the radius of a sphere with identical volume.

In the same way we develop a model for the equivalent
precipitate radius of rotational needle-shaped or rotational lens-
shaped ellipsoids elongated in the mentioned in 〈100〉 directions
or in {100} planes.

2. Model development

The equivalent precipitate radius of spherical precipitates is
defined by Ardell [11] for the shearing mechanism with

req ¼ π
4
r; ð8Þ

and for Orowan mechanism as

Req ¼ 2req ð9Þ

Eqs. (8) and (9) are established for spherical particles, but in fact,
precipitates often have different shapes and orientations. Exam-
ples for fcc-structured non-spherical precipitates are β″ needles
oriented in 〈100〉 directions in aluminum 6xxx series, and θ″ and γ″
precipitates extended in {100} planes in aluminum 2xxx series and
Inconel 718, respectively. In the present modeling, gradual evolu-
tion from spherical to needle-shaped particles in fcc-structure is
described by the prolate-type precipitate in 〈100〉 directions (h4c/
a). The oblate-type represents precipitates extending in {100}
planes (hoc/a).

In ellipsoidal precipitates, the shape and growth direction of
precipitates associated with the slip plane is shown schematically
in Fig. 1. In this figure, the distance between two parallel slip
planes, which surround the precipitate, is

2n¼ 2rh
� 1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð sin αÞ2þh2ð cos αÞ2

q
; ð10Þ

where α is the angle between the rotational axes of the precipitate
(assumed to be [100] here) relative to the normal direction of slip
plane [111]; α¼54173'. With these assumptions, Eq. (10) can be
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simplified to

2n¼ 2rh
� 1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
þ h2

3

s
ð11Þ

The outer cut-off radius in the Orowan mechanism and the
diameter of precipitates in the shearing mechanism are equal for
spherical precipitates because the cross section of precipitates
with the slip plane is circular. Thus, the movement of screw or
edge dislocations in different directions has the same “trace” on
the precipitates. In contrast, the cross section of ellipsoidal pre-
cipitates with the slip plane is an ellipse. As a consequence, both,
the outer cut-off radius and the precipitate radius, depend on the
length of this ellipse and its orientation relative to the movement
of the dislocation. In the following, the half axes of the cross
section ellipse are referred to as ra and rc, where rc is parallel to the
projection of the particle rotation axes into the slip plane. The
mean values of these parameters are found using the normal
distance n as

2n� 2rc ¼ πac; ð12Þ

rc ¼ π
4
rh

2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2þh2

s
; ð13Þ

ra ¼
π
4
a¼ π

4 r

h
1
3

ð14Þ

The shape and orientation of these cross sections relative to the
dislocation movements are illustrated in Fig. 2.

Since the rotation axes of the particles are assumed to be [100],
[010] or [001], the according projections in the slip plane (rc) are

parallel to 1 2 1
h i

, 1 1 2
h i

or 2 1 1
h i

, respectively. We

introduce the angle φ, indicating the angle between rc and the

moving direction of the dislocations. This angle is φ1¼0, φ2¼2π/3
and φ3¼�2π/3 for edge dislocations and φ4¼π/2, φ5¼π/6 and
φ6¼�π/6 for screw dislocations.

Interaction mechanisms between a dislocation and shearable
and non-shearable precipitates are different. Here, we distinguish
between equivalent precipitate radius for shearable precipitates
and equivalent outer cut-off radius for non-shearable precipitates.

2.1. Equivalent precipitate radius in shearing mechanism

Since dislocations are assumed to be straight for the shearing
mechanism, the dislocation length inside a precipitate during
shearing is maximal when the dislocations are located at the
center of the precipitate for spherical and ellipsoidal precipitates.
This leads to an expression for the maximum length of the
dislocation line in the particle, ωeq, which is therefore referred
to as “effective equivalent radius”, with

ωeqðφ;hÞ ¼
π
4
rh

2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þð tan φÞ2Þ

2þh2ð1þ3ð tan φÞ2Þ

s
ð15Þ

Table 1 summarizes ωeqðφ;hÞ values for the different angles φ
of interest.

In the case where an edge or screw dislocation experiences
each precipitate orientation with the same probability, the average

Fig. 1. Prolate and oblate precipitates elongated in 〈100〉 and {100} directions,
which are confined between two parallel slip planes {111}.

Fig. 2. (a and b) Length of edge and screw dislocations in oblate precipitates for the shearing mechanism, (c and d) projections of precipitates on edge and screw dislocations
for the non-shearing mechanism.
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mean values ωeq are found as

ωeq;edgeðhÞ ¼
1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2þh2

s
þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

1þ5h2

s" #
h

2
3

( )
req; ð16Þ

ωeq;screwðhÞ ¼
1
3

1
h
þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þh2

s" #
h

2
3

( )
req; ð17Þ

ωeqðhÞ ¼ P1ωeq;edgeðhÞþP2ωeq;screwðhÞ; ð18Þ
where P1 and P2 are the fraction of edge and screw dislocations in
the matrix, respectively.

Eq. (18) defines a coefficient for ellipsoidal precipitates for the
shearing mechanism. Replacing req by ωeqðhÞ in Eqs. (2) and (3)
introduces a more general equation, which is applicable for
spherical precipitates, too.

Fig. 3 shows the normalized equivalent precipitate radius as
function of the aspect ratio for a system including pure edge or
screw dislocations. Accordingly, edge and screw dislocations face
the same equivalent precipitate radius for shearing of needle-
shape particles. For plates, the situations differ. The normalized
equivalent radius generally decreases for edge dislocations with
lower aspect ratios, whereas, for screw dislocations, a minimum is
found at an aspect ratio of approximately 0.2. This means that the
dislocation character can change from screw to edge, which results
in a lower force to shear oblate precipitate.

2.2. Equivalent outer cut-off radius in non-shearing mechanism

In the non-shearing mechanism (Orowan mechanism), disloca-
tions are blocked in front of the precipitates and do not shear

them. Consequently, the precipitate-dislocation interaction is
independent of the intrinsic precipitate properties. The outer
cut-off radius, Req, is the full width of the particles cross-section
normal to the direction of dislocation movement and, thus, also
depending on ra, rc and φ, see Fig. 2.

This geometric configuration, finally, leads to an expression for
the outer cut-off radius Req as

Reqðφ;hÞ ¼ jh1�h2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð1=ð tan φÞ2Þ

q ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c ð cos φÞ2þr2a ð sin φÞ2

q
ð19Þ

The geometry of the particles relative to the moving dislocations
for the Orowan mechanism is the same as for the shearing
mechanism, which leads to mean outer cut-off radii of

Req;edgeðhÞ ¼
1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2þh2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

h2 þ 3

2þh2

s" #
h

2
3

( )
2req; ð20Þ

Req;screwðhÞ ¼ 1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

h2
þ 9

2þh2

s
þ 1

h

" #
h

2
3

( )
2req ð21Þ

ReqðhÞ ¼ P1Req;edgeðhÞþP2Req;screwðhÞ ð22Þ

Eq. (22) defines a coefficient for ellipsoidal precipitates in the
Orowan mechanism. Replacing Req by ReqðhÞ in Eq. (1) provides a
general equation, which is applicable for spherical and ellipsoidal
precipitates.

Fig. 4 shows the normalized equivalent outer cut-off radius
R

n

eqðhÞ ¼ ReqðhÞ=ð2reqÞ for a system including pure edge or screw
dislocations. The value of R

n

eqðhÞ decreases for prolate particles and
increases for oblate particles. There is no remarkable difference
between edge and screw dislocations for the Orowan mechanism.
It means, the correction factor is independent of the dislocation
character.

3. Conclusion

In the present model, we take into account that the free
distance between two precipitates decreases when the precipitate
shape deviates from spherical. This effect generally increases the
yield strength of the material, which has been demonstrated in
previous work. In our present treatment we show that the
increase of the equivalent radius of oblate precipitates in both,
shearing and non-shearing mechanisms, additionally increases the
final yield strength.

Table 1
Equivalent radius ωeqðφ; hÞ of precipitates in different positions of matrix and

equivalent outer cut-off radius Reqðφ; hÞ inside the precipitates for different angle φ.

Disl. type Angle φ ωeqðφ; hÞ Reqðφ; hÞ

Edge φ1 ¼ 0 π h
2
3

4

ffiffiffiffiffiffiffiffiffiffi
3

2þh2

q
r π h

2
3

2

ffiffiffiffiffiffiffiffiffiffi
3

2þh2

q
r

φ2;3 ¼ 72π
3 π h

2
3

4

ffiffiffiffiffiffiffiffiffiffiffiffi
6

1þ5h2

q
r π h

2
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4h2
þ 3

4ð2þh2 Þ

q
r

Screw φ4 ¼ π
2 π h

2
3

4

ffiffiffiffi
1
h2

q
r π h

2
3

2

ffiffiffiffi
1
h2

q
r

φ5;6 ¼ 7π
6 π h

2
3

4

ffiffiffiffiffiffiffiffiffiffi
2

1þh2

q
r π h

2
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4h2
þ 9

4ð2þh2 Þ

q
r

Fig. 3. Normalized equivalent precipitate radius for edge and screw dislocations in
the shearing mechanism.

Fig. 4. Normalized equivalent outer cut-off radius for edge and screw dislocations
for the non-shearing mechanism.

M.R. Ahmadi et al. / Materials Science & Engineering A 590 (2014) 262–266 265



In contrast, the decrease of the equivalent radius of prolate
precipitates decreases the final yield strength. This negative effect
is partially compensated by the decreasing mean distance between
prolate precipitates such that the final yield strength is close to the
one of spherical precipitates.
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In precipitation strengthening, the lattice misfit between precipitate and matrix produces a strain field around precipitates, which
impedes dislocation movement. In this paper, a strengthening model is presented, which delivers the stress increment associated with
the strain field around large homogeneous spherical precipitates. In contrast to previous work, this study takes into account that the
effective resistance force on the dislocation depends strongly on the relative position of the slip plane to the precipitate center. On
ignoring this effect, the maximum shear stress due to the strong and shearing mechanism is generally underestimated. The results are
presented in the form of discrete equations based on the evaluation of the resistance force in front of a moving edge or screw
dislocation and, alternatively, with a correction factor for conventional strong and shearing equations.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Coherency strengthening; Large precipitate; Shear stress
The coherency effect describes a common
strengthening mechanism, which exists in most precipi-
tation strengthening systems. The lattice misfit between
a coherent precipitate and the surrounding matrix pro-
duces a strain field around the precipitate, which hinders
dislocation movement and which leads to dislocation
bending. A precipitate is called “small”, when the oper-
ative strengthening mechanism is weak, because the
maximum angle between two arms of a dislocation
behind a precipitate, the “outer cut-off angle” W, is
between 180� and 100�. They are denoted as “large” pre-
cipitates, when the resistance force is high enough to be
in the region of the strong mechanism by decreasing W
between �100� and 0� [1].

The only operative strengthening mechanism for
small precipitates is the coherency weak and shearing
http://dx.doi.org/10.1016/j.scriptamat.2014.04.019
1359-6462/� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights

⇑Corresponding author at: Christian Doppler Laboratory for Early
Stages of Precipitation, Institute of Materials Science and Technol-
ogy, Vienna University of Technology, Favoritenstr. 9-11/E308,
A-1040 Vienna, Austria. Tel.: +43 1 58801 30885; fax: +43 1 58801
30895; e-mail: mohammad.ahmadi@tuwien.ac.at
mechanism [1,2]. In contrast, the operative strengthen-
ing mechanisms related to large precipitates are the
weak and strong mechanisms simultaneously, depending
on the position of the slip plane with respect to the pre-
cipitate center. This paper analyzes the shear stress
increment of large precipitates by calculating the precip-
itate resistance force F in front of the moving dislocation
in different slip planes, where the coherency strengthen-
ing problem involving large precipitates is treated as a
superposition of particles where the weak mechanism
is operative, and particles which act as strong precipi-
tates. Considering both, the weak (c-w) and strong
mechanism (c-s) for large precipitates, a gap in previous
model descriptions is closed.

Gerold and Haberkorn [3] formulated the resistance
force F in front of a moving edge or screw dislocation
in a homogeneously strained matrix, depending on the
precipitate radius r and precipitate lattice misfit (Da/a)
as

F
z
r

� �
¼ 4Gb jej ru

z
r

� �
ð1Þ
reserved.
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Figure 2. Resistance force of small and large precipitates, shown
schematically. The interaction between large precipitates and a
dislocation produces two “weak” regions (A and C) and one “strong”

region (B).
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e ¼ 1

3

1þ t
1� t

� �
Da
a

ð2Þ

where b is the magnitude of the Burgers vector, G is the
shear modulus, e is the constrained strain produced by
the stress-free strain of linear lattice misfit, t is Poisson’s
ratio, Da is the difference between lattice constants of
matrix and precipitate, a is the lattice constant of the
matrix, and u(z/r) is a function that relates the maximum
force to the dislocation position in the slip plane, with z
being the distance (always taken positive) of the slip plane
from the precipitate center. For a screw dislocation
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and for an edge dislocation
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Figure 1 shows the dependence of the normalized
precipitate resistance force in front of edge and screw
dislocations with respect to their positions in the slip
plane evaluated by Eq. (1) for varying z/r ratio.

The resistance force F has a maximum in front of
screw and edge dislocations when z/r = 1 and z/r =p

2/2, respectively. The maximum resistance force Fmax

in front of an edge dislocation is two times higher than
that in front of a screw dislocation. At z/r > 1, no phys-
ical contact between precipitate and dislocation occurs,
but F is nevertheless non-zero, because the strain field
part lying outside the precipitate still contributes to
the impedance of dislocation movement.

Figure 2 exemplarily compares the resistance forces
in front of a screw dislocation for the cases of small
(Fsmall) and large (Flarge) precipitates. The argumenta-
tion for edge dislocations is analogous. The maximum
shearing force produced by a bent screw dislocation
behind a precipitate at W�0� is F = 2T, indicated by
the vertical line in Figure 2.
Figure 1. Normalized resistance force in front of edge and screw
dislocations due to the strain field around a precipitate.
T is the dislocation line tension, which is given as
[1,2].

T ðhÞ ¼ Gb2

4p
1þ t� 3tðsin hÞ2

1� t

 !
ln

ro

ri

� �
ð7Þ

where h is the angle between the dislocation line and its
Burgers vector, and ro and ri are the outer cut-off and
inner cut-off distances, respectively. The logarithmic part
was approximated by Ardell [2] with ln(ro/ri)�4. In the
present context, this value is irrelevant, because it cancels
out on comparison of Eqs. (23) and (24) with Eq. (8).

Consider the case where the resistance force for small
precipitates Fsmall at its maximum at (z/r) = 1 is lower
than 2T. Consequently, the dislocation can shear the
weak precipitate when W is between 180� and 100�. In
contrast, for a large precipitate and for the present
example, Flarge can reach up to 2T when W is between
100� and 0� in region B. Consequently, the critical
precipitate radius for transition from small to large is
rcrit,edge = T/(2Gbe) and rcrit,screw = T/(Gbe) for edge
and screw dislocations, respectively, where W reaches a
value close to 0�. In Figure 2, three different regions,
A, B and C, are distinguished to describe the interaction
between a screw dislocation and a large precipitate,
where region B is strong and shearable, and regions A
and C are weak and shearable.

Possible regions of interaction between a dislocation
and small precipitates are shown schematically in Fig-
ure 3a. In this case, the precipitate resistance force is
lower than 2T in all planes intersecting the precipitate
region, and the precipitate acts as c-w in all the interac-
tions. The final shear stress is then simply given by the
superposition of all distinct shear stress contributions
based on the sum of square method, as suggested in
Refs. [1,2,4]. Figure 3b depicts the situation where a dis-
location interacts with large precipitates. If the interac-
tion between two sides of a dislocation is c-w (regions
A and C) or c-s on both sides of a dislocation, the
sum of square method is also applicable for evaluation
of the shear stress [1,2,4]. Otherwise, when a precipitate
is c-w on one side of a dislocation and c-s on the other
side, Ardell’s method is used, described below [2].



Figure 4. Ratio of shear stress in different region of coherent
precipitate using T = (2/p)Gb2, t = 1/3, b = 2.5 � 10�10 and e = 0.1.

Figure 3. Interaction between a dislocation in its slip plane with the
strain field around (a) small coherent precipitates, where the operative
strengthening regime is weak and (b) large coherent precipitates in
different regions: (A) where (z/r)<(z/r)min; (B) where (z/r)min<(z/r)<
(z/r)max; (C) where (z/r)>(z/r)max.

M. R. Ahmadi et al. / Scripta Materialia 84–85 (2014) 47–50 49
Ignoring the effect of the c-w mechanism in regions A
and C, Brown and Ham [1] proposed an expression for
the shear stress increment of strong precipitates, where W
is close to 0�, but the precipitate still acts as shearable, as

sstrong;B&H ¼ J
M T
bkss
ðwðrÞÞ

1
4 ¼ J

M T
br

ffiffiffiffiffiffi
3f
2p

r
ðwðrÞÞ

1
4 ð8Þ

with

wðrÞ ¼ Gb e r
T

ð9Þ

and

f ¼ 2p
3

� �
r
kss

� �2

ð10Þ

kss is the free distance between two precipitates in slip
plane, J is a correction factor (equal to 0.8) for the free
distance between randomly distributed precipitates in a
slip plane, and f is the precipitate phase fraction. M is a
constant equal to 2 and 21/2 � 33/8 for screw and edge
dislocation, respectively [5]. Eq. (8) is widely used in
the literature [6–9] for evaluation of the c-s mechanism.
The strengthening effect arising from regions A and C
(Fig. 2) is ignored, however, in Eq. (8) [1]. Whereas this
simplification is not critical for region A (decreasing effect
with increasing precipitate size), region C can have a con-
siderable impact on the shear stress increment for strong
precipitates.

For the c-w contribution in regions A and C (Fig. 2)
and equal dislocation character in all regions, the shear
stress increment due to the interaction between screw
dislocations and a precipitate is [2]

sc�w ¼
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The shear stress increment of the strong part B is

sc�s ¼ J
2T
bkss

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ ðz=rÞmax

ðz=rÞmin

dz
r

s
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Following the aforementioned treatment to combine
c-w and c-s regimes, Ardell’s generalized law of mixture
is used [2], based on the computer simulation experi-
ments of Foreman and Makin [10], which is proposed
for all obstacles in the matrix as a generalization of
the sum of square method, with

sq
total ¼ sq

c�w þ sq
c�s ð13Þ

where the exponent q is typically between one and two.
For combinations of c-w and c-s, Ardell [2] proposed a
value of q = 1.4.

The (z/r)min and (z/r)max values for interaction
between screw dislocation and precipitate are (T/(Gebr))
and (Gebr/(T))0.5, respectively, by replacing F = 2T in
Eqs. (1), (3), and (4). The shear stress of the weak and
strong parts (Eqs. (11) and (12)) then becomes
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Replacing sc-w and sc-s in Eq. (13) by Eqs. (14) and (15)
delivers
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Figure 4 shows the ratio of shear stress in region A

divided by shear stress in region C (=R1) for the total
shear stress of a strong precipitate, assuming T =
(2/p)Gb2, t = 1/3, b = 2.5 � 10�10 and e = 0.1.

When the precipitate radius is <1.5 nm, the operative
strengthening mechanism is c-w. In this range, the share
stress contribution of region A is higher than that of
region C, where R1 is >1. With increasing precipitate
radius, R1 decreases, and the impact of region C on
the total shear stress overcomes region A. When the
precipitate radius reaches �9 nm, R1 becomes <10%.
The curve R2 shows the shear stress ratio of the c-s
mechanism divided by the c-w mechanism. The R2 value
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is zero in the early stage (radius 61.5 nm). It increases
with increasing precipitate size until it reaches a plateau.
For increasing precipitate size, regions B and C provide
the main contributions to the total shear stress.

For evaluation of the interaction between edge
dislocation and precipitates, the same constraints and
calculation steps as used for the case of screw disloca-
tions are applied. Consequently, replacing F = 2T in
Eqs. (1), (5), and (6), the value of (z/r)min becomes
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Eq. (18) emphasizes that, in the early stages of precip-
itate evolution from small to large size, (z/r)max differs
from Eq. (19). For simplicity, this small step is ignored
in Eq. (18), although this effect produces a minor error
just in the mentioned precipitate size. Consequently,
for the shear stress of the c-w and c-s regions in a large
precipitate with an edge dislocation, one obtains
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Substituting Eqs. (20) and (21) into Eq. (13) delivers
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Accordingly, the relative contribution of region A
decreases with increasing precipitate size, and Eqs. (16)
and (22) can thus be simplified for large precipitates,
i.e. negligible region A, as
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Combination of Eqs. (23) and (24) with Eq. (8) delivers

a correction factor for the shear stress of large precipitates
for both, edge and screw dislocations, as
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Eq. (25) shows that identical correction terms of the
simplified model description for sc�s [1] are required
for both screw and edge dislocations.

Consequently, the Brown and Ham equation (Eq.
(8)) needs a modification to reflect these contributions.
If one assumes J = 0.81 as a correction factor for ran-
domly distributed precipitates in a slip plane, and
q = 1.4 for the mixture of contributions from c-w and
c-s mechanisms [2], the strengthening equation for
strong coherent precipitates from Brown and Ham [1]
significantly underestimates the strengthening contribu-
tion by �30%.
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Österreichische Forschungsförderungsgesellschaft mbH
and the Styrian and the Tyrolean Provincial Government,
represented by Steirische Wirtschaftsförderungsgesells-
chaft mbH and Standortagentur Tirol, within the frame-
work of the COMET Funding Programme is gratefully
acknowledged.
[1] L.M. Brown, R.K. Ham, in: Kelly, R.B. Nicholson (Eds.),
Strengthening Methods in Crystals Elsevier Publishing,
Elsevier, Amsterdam, The Netherlands, 1971, pp. 9–135.

[2] A.J. Ardell, Metall. Trans. 16A (1985) 2131.
[3] V. Gerold, H. Haberkorn, Phys. Status Solidi (b) 16

(1966) 675.
[4] T.J. Koppenaal, Appl. Phys. Lett. 4 (1964) 59.
[5] M.R. Ahmadi, E. Povoden-Karadeniz, K.I. Öksüz, A.
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Abstract 

In the present study, we describe a comprehensive and consistent physical model for the yield 

strength change in Allvac
®

 718Plus
TM

 caused by precipitation strengthening. The model 

incorporates the effect of different shearing and non-shearing mechanisms with respect to atomic 

continuity between the lattices of precipitates and matrix. We demonstrate that coherency and anti-

phase boundary effects are the major strengthening mechanisms in this alloy. The final yield 

strength of Allvac
®

 718Plus
TM

 during aging is investigated using the thermo-kinetic software 

MatCalc. The calculated final yield strength evolution is consistent with experimental results. 

1 Introduction  

Engine performance in aerospace and power generation improves with increasing operation 

temperature, thus emphasizing the importance of understanding materials with good mechanical 

properties at high temperatures. Inconel 718 is a nickel based superalloy, which is widely used in 

aerospace and gas turbine engine applications because of superior high temperature mechanical 

properties [2] up to 650°C. 

In 2004, Allvac
®

 718Plus
TM

 (hereafter 718Plus) was introduced by ATI Allvac, giving 55K higher 

service temperature compared to Inconel 718 [3]. 718plus has a similar chemical composition to 

Inconel 718, however, with higher Ti+Al, Al/Ti ratio and approximately 1% Tungsten. In addition, 

approximately 50% of Fe is replaced by Co. With this chemical composition, γ' formation is 

strongly favored in place of γ'', thus eliminating the weakening effect in 718 due to γ'' 
transformation. The γ' phase is a stable fcc (Ni,Co)3(Al,Ti,Cr,Nb) precipitate with L12 structure, 

with a roughly spherical morphology at low phase fractions and remaining coherent even after over 

aging [2, 4]. 

The focus of this paper is the anti-phase boundary (APB) and coherency strengthening effects 

caused by γ' precipitation.  

 

2 Experimental and computational procedures 

MatCalc version 5.52 (rel 0.031) is used for simulation with the thermodynamic database 

mc_ni_v2.000_015 and the diffusion database mc_ni_v2.000_001 [1]. The composition of 718Plus 

is given in Table 1.  
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Table 1: Alloying composition of Inconel 718Plus in weight percent [Wt.%] 

 Al Co Cr Nb C Fe Mo Ti  W Ni 

[Wt.%] 1.46 9.13 17.42 5.48 0.028 9.66 2.72 0.71 1.04 bal. 

The conventional heat treatment process applied in this work is solution annealing at 975°C for 60 

minutes, followed by cold water quenching and aging at 788°C. Hardness and yield strength are 

measured subsequent to heat treatment and at room temperature. Vickers hardness is measured with 

a Vickers hardness tester FV 4E to identify precipitation hardening at five aging times (1, 5, 10, 25 

and 50 hours). Yield strength is measured by compression testing carried out three times for each 

sample with Zwick Z250 testing devices. For transmission electron microscopy (TEM) analysis, the 

specimens are ground with silicon carbide papers down to 0.1mm and electropolished in a solution 

containing 5% perchloric acid and 95% ethanol at 32 V and -10 °C. The FEI Tecnai F20 

microscope is operated with 200 kV acceleration voltage. All samples are pre-cleaned in a He 

plasma in order to remove surface oxides and impurities. 

3 Strengthening model 

The final yield strength in heat treatable materials is calculated as a superposition of the inherent 

stress of the base metal σi, grain boundary strengthening σg, solid solution strengthening σs , work 

hardening σw and precipitation strengthening σp, [6].  

3.1 Precipitation strengthening. The shearing component of the precipitation strengthening 

process contains several different strengthening mechanisms: (i) interfacial strengthening, (ii) 

modulus strengthening, (iii) coherency strengthening and (iv) APB strengthening. Coherency and 

APB effects are the two predominant strengthening effects in the 718Plus superalloy. 

3.1.1 Shearing mechanisms. In this section, we describe the coherency and APB effects for the 

cases when precipitates are small and shearable (weak mechanism) or large and shearable (strong 

mechanism). 

Coherency effect. The difference in lattice parameter between the precipitate and matrix produces a 

strain field around the precipitate which hinders dislocation movement. Brown and Ham [7] 

proposed a strengthening equation for weak and shearable precipitates based on the Gerold and 

Haberkorn [8] coherency model as 
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k is a constant equal to 4.11 and 1.38 for edge and screw dislocations, respectively. G is the shear 

modulus, assumed to be 78.0 GPa [4], b is the Burger’s vector (0.254 nm), r  is the precipitate mean 

radius and Ls the surface-to-surface distance between two precipitates. υ is Poisson's ratio (~0.33), ε 

is the constrained strain produced by the stress-free strain of lattice misfit δ [9]. δ is the strain 

measured with 0.004 in this study by TEM analysis. ro is the outer cut-off distance, which is equal 

to the distance between two particles along the dislocation line for shearable precipitates [7, 10]. ri 

is the inner cut-off distance (=2b [10]) and Ө is the angle between the dislocation line and its 

Burger’s vector in Eq. 2. 

The shear stress in Eq. 1 is valid for weak precipitates. For strong precipitates, Brown and Ham [7] 

proposed the following strengthening equation 
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with m being equal to 2.1 and 2 for edge and screw dislocations, respectively. 
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Anti-phase boundary effect. The anti-phase boundary effect is a strengthening mechanism for 

ordered precipitates during shearing by dislocations. For weak precipitates 
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where γAPB is the APB energy of γ' (=0.111 Jm
-2

 , Ref. [13]). For strong and shearable ordered 

precipitates, Hüther and Reppich [11] proposed 
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where w is a parameter introduced for remaining dislocation segments incorporating also some 

other uncertainties. Its value is estimated to be 2.8. 

3.1.2 Non-shearing mechanism. At the last stage of aging, the precipitate resistance force in 

front of the dislocation is sufficiently high to block dislocation movement. The yield strength 

increases even if the precipitates are still coherent with the matrix. In 1944, Orowan [12] proposed a 

strengthening equation for spherical and non-shearable precipitates. This equation is modified to the 

generally accepted form by Ashby [5] and Brown and Ham [7] as 
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3.2 Mixture of shearing mechanisms. A general approximation for superposition of different 

weak or strong strengthening mechanisms i was proposed by Ardell [10] to calculate the yield 

strength increase due to the different strengthening mechanisms with 

( ) 8.1

1
8.1

,

8.1

,. iAPBiCohpy M ττσ += ,                                                                                                                 (7) 

where M is the Taylor factor for converting shear stress to yield strength (M ~ 2.6) [14]. 

4 Results and discussion 

The formation of γ' precipitates during aging produces the major effect on the final yield strength in 

718Plus. The proposed strengthening equations in section 3.1 are functions of size and distribution 

of γ', which vary as a consequence of the applied heat treatment. Fig. 1 shows TEM dark field 

images of 718Plus after aging at 788°C for 1, 10 and 50 hours.  

 

 
(a)                                           (b)                                          (c) 

Fig. 1: Dark field images of 718Plus after aging at 788°C for (a) 1 hr (b) 10 hrs (c) 50 hrs. 

From Fig. 1, it is clear that the size of the spherical γ' precipitates increases during aging, while their 

number density Ns decreases. Simulation of mean radius and number density of γ' is shown in Fig. 2 

compared with the experimental results of measurements from the TEM investigation. 
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Fig. 2: Simulation result of (a) mean radius (b) number density for 718Plus as a function of aging 

time at 788°C compared with experimental TEM results 

Ns appears in the strengthening equations indirectly as Ls=1/√Ns. The simulated and experimental 

results of aging shown in Fig. 2 demonstrate that precipitate mean radius increases during aging 

time (improves yield strength) whereas precipitate number density decreases (reduces yield 

strength).  

The experimental results of final yield strength shown in Table 2 represent the maximum yield 

strength after 10 hours, which is 955 MPa. It means before 10 hours, the effect of mean radius 

increase dominates against the number density decrement and, as a result, the yield strength 

increases. After 10 hours, the effect of number density decrement overcomes the mean radius 

increase and yield strength reduces. 

Table 2: Experimental results of yield strength of 718Plus as a function of aging time at 788 °C 

 1 hr 5 hr 10 hr 25hr 50 hr 

Yield Strength [MPa] 883 900 955 923 900 

 

  

Fig. 3: Simulation of strengthening (a) coherency effect (b) contribution of all strengthening 

components in final yield strength. 
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Fig. 3(a) shows simulation results of weak and strong regimes in coherency strengthening 

independent of other mechanisms, as described in Eqs. 1-3, compared with the Orowan Eq. 6. It is 

apparent from Fig. 3 (a) that the weak strengthening mechanism defined in Eq. 1 strongly depends 

upon precipitate radius and has less dependency upon the precipitate free distance. Consequently, in 

the weak strengthening regime, the shear stress increases by precipitate coarsening during aging. 

The decrement in strong strengthening regime during aging is due to the weak dependency of strong 

strengthening equation on the precipitate radius, which results in strong dependency upon the 

precipitate free distance. Fig. 3 (a) indicates that the operative strengthening regime up to 20 hours 

is the weak regime, which is replaced by the strong strengthening regime later. 

In the same way, the yield strength increase due to the APB effect based on Eqs. 4 and 5 can be 

simulated. The APB mechanism contributes to the final precipitation strengthening in addition to 

the coherency effect although this effect is not as significant as the coherency strengthening.  

Eq. 7 defines the method used for calculation of total weak and strong precipitation strengthening 

considering coherency and APB effects. In this study, the γ' precipitate acts as a shearable 

precipitate even if it has an average diameter of 55 nm.  

Fig. 3 (b) shows the magnitude of total yield strength in 718Plus where all the strengthening 

components except precipitation strengthening are held constant (≈300 MPa) during aging. As 

displayed in this plot, the main contribution to the total yield strength is the precipitation 

strengthening, which provides more that 65 % of the total yield strength at peak hardness. 

 

5 Conclusion 

• The final yield strength in 718Plus is a combination of contributions from grain boundary, 

solid solution strengthening, work hardening and precipitation strengthening, in which precipitation 

strengthening has the highest effect. 

• Coherency and APB effects are the two significant strengthening components in the 

shearing mechanism, and simulation results show that coherency has stronger effect than APB. 

• The lattice misfit between γ' precipitates and the matrix is small, consequently precipitates 

stay coherent even after a long aging time. 

• Precipitation strengthening increases during aging when the phase fraction of γ' increases. At 

the peak of yield strength, the phase fraction of γ' is almost constant. Further aging leads to 

precipitate coarsening, which subsequently reduces the yield strength.  
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a b s t r a c t

The yield strength of Allvacs 718Plus™ during aging is computed using integrated physical models that
take into account intrinsic, grain boundary, solid solution and precipitate strengthening contributions.
Precipitation strengthening of γ0 has the main effect on the final yield strength in this alloy during aging,
with the coherency and anti-phase boundary effects providing the major strengthening contributions.
We utilize transmission electron microscopy to obtain the unknown physical parameters entering the
strengthening models and compare precipitate size and distribution with the simulation results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The performance of gas turbines and aero-engines can be
improved by increasing the operating temperature of these devices.
Whereas the Ni-base superalloy Inconel 718 shows superior mechan-
ical properties up to 650 1C [1], the alloy Allvacs 718Plus™ (hereafter
718Plus) developed by ATI Allvac in 2004 can be operated at even 55 K
higher service temperature. This advantage is accomplished by alloy-
ing with Co and W, and adjusting the Al/Ti ratio, altogether favoring
the formation of ordered cubic L12-type (Ni,Co)3(Al,Ti,Cr,Nb,W) γ0 over
tetragonal D022-type ordered metastable (Ni)3(Nb) γ″ [2]. To demon-
strate the effect of alloying elements on the phase stabilities at high
temperatures, in Fig. 1, the computed molar equilibrium phase fraction
of γ0 and of metastable γ″ (the equilibrium phase δ suspended) with
the thermodynamic database mc_ni_v2.003 [3] at 700 1C is presented
as a function of the Al/Ti and Co/Fe ratios at constant weight fractions
w(Nb)¼0.055, w(Mo)¼0.03, w(Cr)¼0.17 and w(Ti)þw(Al)¼0.02,

w(Co)þw(Fe)¼0.18, representing typical sums of γ0-forming alloying
elements.

In contrast to the γ″ phase, which has a weakening effect on the
material as it transforms to orthorhombic thermodynamic equili-
brium Ni3Nb (δ-phase) under long-term operation, γ0 remains stable
and coherent even in over-aged conditions [1,4]. This should be
beneficial in terms of precipitation strengthening, which is investi-
gated in the present study by mechanical tensile testing combined
with microstructural analysis using transmission electron microscopy
(TEM). On comparison of the experimental results with our yield
strength modeling and simulation, we were able to determine the
prevailing physical strengthening mechanisms. For yield strength
modeling, we used an integrated approach considering all types of
contributions to the final yield strength (sy), which have been
implemented in the solid-state transformation kinetics software
MatCalc, version 5.60 (rel 0.005) [5–7] by the authors of this paper.
In the description of strengthening mechanisms, the main focus is on
the shearing of γ0 precipitates with anti-phase boundary (APB) and
coherency effects. These are observed to be the dominating mechan-
isms over the modulus effect, since similar shear moduli of matrix
and γ0 precipitates will not produce high resistance forces in front of
a moving dislocation [8,9]. The interfacial effect is assumed to play
only a minor role, too [9,10].
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2. Experimental

Hardness and compression tests of heat-treated 718Plus sam-
ples were used to analyze changes of precipitation hardening as a
function of aging time. The composition of 718Plus used in this
survey is given in Table 1.

A conventional heat treatment process is applied in this work.
The specimens are solution annealed at 975 1C for 60 min, con-
tinued by water quenching and aging at 788 1C temperatures for
different aging times (1, 5, 10, 25 and 50 h). Vickers hardness is
determined using a Reichert-Jung Micro Duromat 4000 hardness
tester equipped with a Vickers diamond pyramid indenter. The
compression tests are reproduced twice for each point using a
Bähr-Thermoanalyse DIL805A/D quenching and deformation dilat-
ometer. The dimensions of the cylindrical specimens are 4 mm
diameter and 8 mm length.

The specimens for TEM investigation are ground with silicon
carbide paper to approximately 0.1 mm and electro-polished in a
solution containing 5% perchloric acid and 95% ethanol at 32 V and
�10 1C. They are cleaned in He plasma to remove all the oxides
and impurities of the surface. An FEI Tecnai F20 FEGTEM is utilized
at 200 kV acceleration voltage for microstructure analysis.

Transmission electron microscopy (TEM) was used to deter-
mine the mean radius, number density and phase fraction of the γ0

precipitates. Dark-field imaging was used to resolve the individual
precipitates, combining the diffracted beams arising from the
unique chemical ordering of the γ0 phase. Approximately 1000
precipitates were measured in Digital Micrograph for each heat
treatment to determine the mean radius. Number density and
phase fraction were calculated by measuring the number of
precipitates in a known volume of the specimen. The volume
was determined by area measurement from TEM images and
thickness measurement using electron energy-loss spectroscopy
(EELS) and the standard log-ratio method described in [4]. Only

regions less than 100 nm thickness were used for this analysis to
avoid inaccuracy due to overlap of precipitates. A correction factor
was applied, according to the procedure described in [4], to correct
for the fact that a proportion of precipitates intersect the foil
surface.

3. Modeling of precipitation

To calculate the nucleation rate J of γ0 precipitates per unit
volume and time, the classical nucleation theory [11] is used:

J ¼N0Zβn exp
�Gn

kBTk

� �
exp

τincub
t

� �
; ð1Þ

where N0 is the number of potential nucleation sites, Z is the
Zeldovich factor, β* is the condensation rate of solute atoms at a
cluster of critical size, kB is the Boltzmann constant, Tk is tem-
perature, G* is the energy required to form a nucleus of critical
radius, τincub is the incubation time and t is time. G* depends on
the chemical driving force evaluated by CALPHAD-type thermo-
dynamic parameters stored in mc_ni_v2.003, and the interfacial
energy between matrix and precipitate. The interfacial energy is
evaluated with the generalized broken bond (GBB) approach as
described in Ref. [12] and taking into account interfacial curvature
size effects [13].

The precipitate growth kinetics is simulated with the SFFK
mean-field model for multi-component multi-phase systems [5,6].
In a precipitation environment of an arbitrary number of spherical
particles nucleating and growing in a unit volume of matrix phase,
the total Gibbs energy of the system is described by

G¼ ∑
n

i ¼ 1
N0iμ0iþ ∑

m

k ¼ 1

4πρ3k
3

λþ ∑
n

i ¼ 1
ckiμki

 !
þ ∑

m

k ¼ 1
4πρ2kγ; ð2Þ

where N0i is the number of moles of component i in the matrix
phase and λ is the contribution from elastic energy. μ, ρ and c denote
chemical potential, radius and concentration, respectively. The index
k refers to the index of individual precipitate size classes [6].

During isothermal heat treatment, the total free energy of the
system decreases and the precipitate microstructure evolves. The
difference in free energy between the initial and the evolved state
is dissipated. The free energy dissipation takes place by interface
movement, diffusion of atoms inside of the precipitates and
diffusion of atoms in the matrix. The total rate of dissipation is
given as the sum of these individual contributions. The rate of total
free energy change is connected with the free energy dissipation
rate using the thermodynamic extremum principle [14–16], and
the system evolution is given by a set of linear equations, in which
the rate of radius and chemical composition change of each
precipitate is evaluated. To determine the evolution of the entire
precipitate population, the rate equations are integrated numeri-
cally under the constraint of mass conservation. The integration is
carried out based on the numerical Kampmann–Wagner approach
[6,17]. For every time increment in the precipitation simulation
and for each precipitating phase, the growth kinetics and the
change in composition are evaluated based on the evolution
equations [5] and the nucleation rate expression Eq. (1). Further
details about the models and the numerical treatment of the
evolution equations are given by Svoboda et al. [5] and Kozeschnik
[18]. In MatCalc, the evolving precipitate properties under user-
defined heat treatments are directly used for the simulation of
yield strength.

4. Yield strength modeling

The final yield strength (sy) in annealed crystalline materials is
constituted by grain boundary strengthening (sy,g), solid solution

Fig. 1. Computed molar phase fractions of γ0 and γ″ (delta phase suspended in the
calculation) at Al/Ti wt. ratios from 0.2 to 0.8 and varying Co-content.

Table 1
Chemical composition of 718Plus.

Al Co Cr Nb C Fe Mo Ti W Ni

wt. % 1.46 9.13 17.42 5.48 0.028 9.66 2.72 0.71 1.04 Balanced
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strengthening (sy,s) and precipitation strengthening (sy,p), which
are simply combined linearly [19] as

sy ¼ sy;gþsy;sþsy;p: ð3Þ
In the following, the models for individual strengthening con-
tributions to sy are briefly reviewed.

4.1. Grain boundary effect

Grain boundaries act as impenetrable barriers for dislocation
movement, and contribute, together with the friction stress si, to
the yield strength of a crystalline matrix. This concept was
formulated by Hall [20] and expanded by Petch [21] as

sy;g ¼ siþ
klockffiffiffiffi

D
p ð4Þ

where si is the friction stress of the crystal lattice to dislocation
movement, klock is the locking parameter of grain boundary
hardening and D is the grain diameter [21,22]. Thompson [23]
determined the friction stress of Ni-based superalloys as
si¼21.8 MPa and klock¼0.158 MPa m1/2.

4.2. Solid solution strengthening

The common equation describing the solid solution strength-
ening effect as reviewed by Butt [24] is

sy;s;i ¼ ks;iC
p
i : ð5Þ

here, ks,i is a strengthening constant for solute i, Ci is the
concentration of solute i and p is a constant that, in general, varies
between 1/2 and 1 [25]. sy,s,i defines the yield strength increment
due to solute i. In the proposed model of Labusch [26] and Nabarro
[27], p is 2/3 although, in the case of superalloys, Felthman [28]
proposed a value of p¼1/2.

To evaluate the yield strength in multicomponent systems,
Gypen and Deruyttere [29] proposed a method to integrate the
overall yield strength increment of different alloying components
based on the following equation:

sy;s ¼ ∑
i
ðks;iCp

i Þq
!1=q

0
@ ð6Þ

where q¼2 and p¼1/2.
The strengthening constants ks,i of alloying elements found in

Eqs. (5) and (6) are indispensable for the evaluation of the solid
solution strengthening effect for sy,s. Mishima et al. [30] defined ks,
i experimentally for different alloying elements in binary systems
Ni–X, with X being an element from the transition metal group.
Their results are summarized in Table 2. Later, Roth et al. [31] used
these constants in a multi-component Ni-base system and found
good agreement between experimental and simulation results,
using the model for solid solution strengthening proposed by
Feltham [28] and given in Eq. (6).

4.3. Precipitation strengthening

At the early stages of aging of heat-treatable alloys, coherent
precipitates with sizes ranging from close to unit cell up to a few
nanometers govern the precipitation strengthening contribution to

sy. Lattice continuity (coherency) prevails at the precipitate–matrix
interface, and the precipitate resistance force F is not high enough
to bend an approaching dislocation strongly. This interaction
between precipitate resistance force F in front of dislocation move-
ment and the dislocation line tension T needs to be examined in
order to distinguish the different regimes of precipitation strength-
ening from each other. Fig. 2 represents this relation for the case of
early precipitation of coherent particles.

Fig. 2(A) shows a situation where the outer cut-off angle Ψc lies
inside the limits of 1201 and 1801. This region confines the regime
of weak and shearable precipitates. Under prolonged aging, the
precipitate resistance force increases as a consequence of increas-
ing precipitate size and the outer cut-off angle Ψc decreases from
1201 to 01. This region confines the regime of strong and shearable
precipitates (Fig. 2(B)).

Finally, for continued aging, precipitates often lose coherency
or the precipitate resistance force in front of the dislocation
movement increases beyond 2T, Ψc¼01. The precipitates are then
no longer sheared by dislocations. This situation is shown in Fig. 2
(C). Non-shearing precipitates are by-passed by the dislocation,
leaving behind a dislocation ring around the precipitate (Orowan
mechanism).

4.3.1. Shearing mechanisms
A specific feature of 718Plus is that the strengthening particles

(Ni,Co)3(Al,Ti,Cr,Nb) γ0 remain coherent even after thousands of
hours in service. This makes 718Plus a suitable model system to
investigate the different strengthening contributions related to
shearing. These are (i) coherency strengthening, (ii) anti-phase
boundary (APB) strengthening, (iii) modulus strengthening and
(iv) interfacial strengthening. The models describing these effects
are reviewed in the following.

4.3.1.1. Coherency effect. The difference between lattice parameter
of the precipitate and matrix produces a strain field around the
precipitate, which interacts with the moving dislocation. Brown
and Ham [32] proposed a shear strengthening equation for weak

Table 2
ks,i Strengthening constants of different alloying elements in Ni, from Ref. [30].

Alloying element Al Co Cr Nb C Fe Mo Ti W

Strengthening constant (MPa at Fraction�1/2) 225 39.4 337 1183 1061 153 1015 775 977

Fig. 2. Schematic interaction between a dislocation and precipitates with
different sizes.
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and shearable precipitates based on Gerold and Haberkorn's [33]
coherency model as follows:

τCoh;weak ¼ k
G3bε3r3

L2s TðθÞ

 !1=2

; ð7Þ

with

ε¼ 1
3

1þυ

1�υ

� �
Δa
a
; ð8Þ

and

TðθÞ ¼ Gb2

4π
1þυ�3 sin 2θ

1�υ

 !
ln

ro
ri

� �
ð9Þ

k is a constant equal to 4.11 and 1.38 for edge and screw
dislocation, respectively [9,32]. G is the shear modulus, b is the
Burgers vector, r is the precipitate mean radius and Ls is the
surface-to-surface distance between two precipitates. In Eq. (8), υ
is Poisson0s ratio, ε is the constrained strain produced by the stress
free strain of linear lattice misfit δ [34], a is the lattice parameter of
the matrix and Δa is the difference between lattice parameters of
matrix and precipitate.

For shearable precipitates, the outer cut-off distance, ro, is the
distance between two particles along the dislocation line [9,32]. ri
is the inner cut-off distance, which is the dislocation core radius
with values between b and 4b [9] and θ is the angle between the
dislocation line and its Burgers vector in Eq. (9).

For strong and shearable precipitates, Brown and Ham [32]
proposed the following strengthening equation:

τCoh;strong ¼
m
Ls

T3ðθÞGεr
b3

 !1=4

; ð10Þ

where m is equal to 2.1 and 2 for edge and screw dislocation,
respectively.

The surface-to-surface distance between two particles is a key
factor in the evaluation of precipitation strengthening. Sondereg-
ger et al. [35] proposed a statistical model for the free distance
between randomly distributed spherical particles as

Ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 3
2π∑

c
nv;crc

þð2rssÞ2
vuut �2rss ð11Þ

and

rss ¼
ffiffiffi
2
3

r ∑
c
nv;cr2c

∑
c
nv;crc

: ð12Þ

where rc and nv,c are specific radius and number density of
particles in an array of size classes.

4.3.1.2. Anti-phase boundary effect. Strengthening by the anti-
phase boundary effect occurs when dislocations shear ordered
particles. During shearing, the dislocations modify the local nature
of chemical atomic bonds in the slip plane and produce
energetically unfavorable atomic ordering in the precipitates. The
shearing dislocations travel in groups, where the number of
dislocations in a group depends on the type of order structure
(e.g. face-centered cubic L12, tetragonal D022) and is important for
the ability of precipitates to restore to the perfect order structure
after the precipitate–dislocation interaction. The leading dislo-
cation creates an anti-phase boundary in the precipitate and the
trailing dislocation compensates the effect of the first one and
restores the ordered structure again.

For weak precipitates, this mechanism contributes to the shear
strength as [36]

τAPB;weak ¼
2T
bLs

πγAPBr
4T

h i3=2
�β

π

3
γAPBr2

bL2s

( )
; ð13Þ

where γAPB is the anti-phase boundary energy of the precipitate
and β is a constant between 0 and 1. As the trailing dislocation is
expected to be straight, β is chosen to be close to 0.5, here [36].

For strong and shearable ordered precipitates, we utilize the
expression proposed by Hüther and Reppich [37] with

τAPB;strong ¼
2wT
πbLs

� �
π2γAPBr
4wT

�1
� �1=2

ð14Þ

where w is a parameter introduced for incorporation of the effect
of remaining dislocation segments as well as some other uncer-
tainties. Its value is assumed to be 2.8.

4.3.1.3. Modulus strengthening effect. If the dislocation energy
inside and outside the precipitate varies due to different shear
moduli of the precipitate and the matrix, this energy difference
potentially improves the shear stress. For the weak mechanism,
Nembach [38] obtained

τMod ;weak ¼
2T
bLs

ω1jGp�Gjb2ðπr=4bÞω2

2T

" #3=2
; ð15Þ

where ω1 and ω2 are two constants equal to 0.05 and 0.85,
respectively. Gp is the shear modulus of the precipitate. For
strong and shearable precipitates, the modulus effect is
represented as [9,32]

τMod ;strong ¼
ω1jGp�Gjb2ðπr=4bÞω2

bLs
: ð16Þ

4.3.1.4. Interfacial effect. A shearing dislocation produces two
ledges after entering and leaving a precipitate. This increases the
interfacial area in the affected regions, yielding an increase of yield
strength as [9,32]

τChem;weak ¼
2T
bLs

γIFEb
T

� �3=2
; ð17Þ

for the weak mechanism and

τChem;strong ¼
2γIFEb
bLs

; ð18Þ

for strong shearable precipitates. γIFE is the energy of the
precipitate–matrix interface created by the shearing dislocation.

4.3.1.5. Superposition of shearing mechanisms. For the simultaneous
effect of different shearing mechanisms to the total shearing
stress, Ardell [9] proposed the following expression for the
superposition of individual strengthening mechanisms:

sy;p ¼MðτqCohþτqAPBþτqModþτqChemÞ1=q; ð19Þ

where M is the average value for converting shear stress to tensile
stress. In fcc polycrystalline materials, ME2.6 [39]. q is an
exponent, which lies between 1 and 2. Ardell [9] proposed a
value of q¼1.8 for contributions of different weak or different
strong regimes.

4.3.2. Non-shearing mechanism
The strengthening formalism for spherical non-shearable pre-

cipitates described in Fig. 2(c) was developed by Orowan [40] and
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modified to the generally accepted form by Brown and Ham [32] as

sOrowan ¼
MGb

2π
ffiffiffiffiffiffiffiffiffiffi
1�υ

p 1
Ls

ln
π

2
r
ri

� �
: ð20Þ

This expression is utilized in the present investigation.

5. Result and discussion

In this section, the computed influence of grain size and solid
solution strengthening on the yield strength of 718Plus is dis-
cussed. Then, the models of Section 4 are used for the simulation
of precipitation strengthening. MatCalc version 5.60 (rel 0.005) is
applied for all types of equilibrium and kinetic simulations. The
thermodynamic database mc_ni_v2.003.tdb and the diffusion
database mc_ni_v2.003.ddb are used in the thermo-kinetic simula-
tions [3].

5.1. Grain size effect

In Nb-containing Ni-base superalloys, the δ phase is respon-
sible for pinning of grain boundaries and, thus, limits free grain
growth at high temperatures. This, in turn, means that the grain
size strongly depends on the applied solution annealing tempera-
ture. In the present study, solution annealing below 1000 1C is
applied, which is below the solvus of the δ phase in 718Plus. As a
consequence, the measured grain size of 718Plus after quenching
is small, approximately 20 μm, and the grain size effect produces
an increment in the final yield strength equal to sy,g ¼56 MPa (see
Section 4.1).

5.2. Solid solution effect

Fig. 3 shows the evolution of the computed solid solution yield
strength contributions of individual alloying elements in 718Plus
during isothermal aging at 788 1C based on the results of the
thermo-kinetic precipitation simulation (see next Section 5.3) and
the strengthening parameters discussed in Section 4.2. After
quenching and before aging, Nb has the strongest effect in solid
solution strengthening (E200 MPa) and Co has the weakest effect
(E12 MPa). During aging, the important effect of Nb diminishes,
as Nb migrates from the matrix into the γ0 precipitates. The same
applies to the γ0-forming elements Al and Ti. In summary, using

the suggested ks,i values shown in Table 2 in the yield strength
computation, we observe a decreasing sy,s as a function of aging
time. The remaining elements, such as Cr and Mo, which prefer to
be dissolved in the matrix, cannot compensate for the loss of Nb,
Al and Ti due to the formation of γ0.

5.3. Precipitation hardening effect

5.3.1. Experimental results
The precipitation strengthening equations in Section 4.3 build

upon the knowledge of the number density and mean radii of
precipitates from the thermo-kinetic simulation. Accordingly, the
yield strength increases roughly proportional to the precipitate
mean radius r and number density Ns, and inversely proportional
to the precipitate free distance Ls. Consequently, the final yield
strength after a specific heat treatment can be evaluated, if the
precipitate distribution (number density and mean radii) and
precipitate properties (lattice mismatch, etc.) are known. Experi-
mentally, we have obtained these parameters by transmission
electron microscopy (TEM) analysis. For isothermally heat-treated
718Plus, the evolution of the γ0 precipitate population is character-
ized by dark field TEM as shown in Fig. 4.

The size of the spherical γ0precipitates increases with aging
time due to precipitate coarsening, while the number density of
particles decreases. Fig. 5 shows the experimental points of the
TEM measurements for (a) mean radius, (b) number density and
(c) phase fraction of γ0 precipitates during the heat treatment
together with the results of the thermo-kinetic simulation.

5.3.2. Simulation results
Fig. 5 demonstrates that the trends of the simulated γ0 pre-

cipitate sizes (a) and number densities (b) reproduce the experi-
mental data well. The mean radius increases during aging, while
the number density of γ0 precipitates decreases. The thermo-
kinetic precipitation results are used as input parameters for the
yield strength simulation, next.

Fig. 6(a) compares the simulated coherency strengthening
effect in the weak and strong regimes to predictions based on
the Orowan mechanism for γ0 precipitates. The lowest strengthen-
ing value is assumed to define the operative strengthening
mechanism. The input parameters of our simulations are summar-
ized in Table 3, where we have used strengthening parameters
from the literature as well as parameters obtained from our
present microstructural investigation. From the results, we
observe that the weak strengthening regime depends mainly on
the precipitate radius, which increases strongly in the first hours
of heat treatment and continues to increase due to coarsening
(Ostwald ripening). On the other hand, a decreasing coherency
strengthening effect is observed during coarsening as a function of
aging time in the strong strengthening regime. This behavior is
related to the weak dependency of the coherency strong regime on
the precipitate radius relative to the precipitate free distance
according to Eq. (10).

Fig. 6(b) analyzes the computed individual yield strength
increment due to the APB effect. This effect is stronger than the
coherency effect. Somewhere in the middle of the present heat
treatment, the strong mechanisms for anti-phase boundary
strengthening replace the weak mechanisms. Fig. 6(c) shows the
yield strength increase due to the modulus strengthening effect.
Since the shear modulus of γ0 precipitates is close to the values of
the 718Plus matrix (see Table 3), this effect makes up for a value of
less than 10 MPa. The chemical effect is even more insignificant
than the modulus effect; less than 5 MPa strengthening for the
weak mechanism is computed (see Fig. 6 (d)).

Fig. 3. Computed solid solution yield strength increments of different alloying
elements based on the thermo-kinetic precipitation simulation.
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Fig. 6(e) illustrates the simulated contributions of weak and
strong regimes obtained from the coherency, APB, modulus and
interfacial effects. From the plot, it is evident that the operative

strengthening mechanism in 718Plus aged at 788 1C is weak and
shearable at the early aging hours (before 10 h aging) and non-
shearable at prolonged aging.

Fig. 4. Dark field images of 718Plus during aging at 788 1C for different times: (a) 1 h, (b) 5 h, (c) 10 h, (d) 25 h, and (e) 50 h.
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The experimental total yield strength values, sy, illustrated in
Fig. 6(f) show a maximum at sy¼1095 MPa after 10 h. From the
simulation results, we conclude that, before 10 h, nucleation and
growth of γ0 precipitates prevail and, thus, the effect of radius
increment dominates over the effect of number density decrement
during coarsening. This is also visible by a rapid increase in the
volume fraction evolution, Fig. 5(c), in the first 10 h. The approxi-
mately constant volume fraction of γ0 is located inside the region of
coarsening, where a yield strength reduction is observed.

Fig. 3 gives a clear indication of the relation between solid
solution strengthening and precipitate evolution from nucleation
and growth to coarsening. The yield strength due to constitutional
alloying elements of γ0, such as Nb, Ti and Al, decreases at early
aging time up to 10 h. Afterwards, the concentration of each
alloying element in the matrix becomes almost constant and, thus,
also the solid solution strengthening effect.

Fig. 6(f) summarizes our computed total yield strength evolu-
tion, sy, in 718Plus compared with results from compression tests,
as well as the simulated contribution of individual strengthening
contributions from intrinsic strength and grain size effect, solid
solution strengthening and precipitation strengthening during
isothermal aging at 788 1C. The grain size and intrinsic effects

are practically constant because the grain size is unchanged during
aging. The predicted decreased solid solution strengthening during
aging is by far compensated by the amount of precipitation
strengthening, which provides more than 65% of the total yield
strength at peak strength.

6. Conclusion

Within a comprehensive computational framework for the
evolution of precipitates during thermo-mechanical treatment,
we demonstrate that the yield strength of the Ni-base superalloy
Allvac 718Plus can be accurately predicted over the entire heat
treatment cycle. The coupling of yield strength simulation with
thermo-kinetic computation of the precipitate evolution shows
that precipitation strengthening increases significantly with the
volume fraction increase of γ0 precipitates. At peak strength, the
phase fraction of γ0 becomes almost constant. Precipitate coarsen-
ing during prolonged aging at 788 1C has a negative effect on the
final yield strength. The yield strength simulation, which is based
on physical modeling and thermo-kinetic precipitation simulation,
suggests that before 10 h aging, the operative strengthening

Fig. 5. Simulation result of (a) mean radii, (b) number densities and (c) phase fractions of γ0 aged at 788 1C compared with experimental TEM results (symbols).
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Fig. 6. Simulation result of strengthening; (a) coherency effect, (b) APB effect, (c) modulus effect, (d) interfacial effect, (e) combination of all weak and strong shearing
mechanisms and (f) contribution of all strengthening components to sy. Results of compression tests are included (symbols).
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mechanism in 718Plus is shearing. Afterwards, the strengthening
is provided by the non-shearing mechanism. The dominant
shearing mechanisms are the anti-phase boundary and coherency
effects, which have the highest impact on the final yield strength
in 718Plus.
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GP (GPa) 77.8 From Ref. [8]
γAPB (J m�2) 0.111 From Ref. [42]
γIF (J m�2) 0.135–0.16a MatCalc thermodynamic database
δ 0.004 Measured
b (nm) 0.254
ν 0.33
ri 2b

a The interfacial energy is composition- and temperature-dependent.
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