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INTRODUCTION OF PRESENT RESEARCH

Introduction of present research

Precipitation strengthening is one of the main strengthening mechanisms in crystalline
materials, which has been discovered more than hundred years ago. The primary
progress in precipitation strengthening was focused on experimental results. In 1940,
Mott and Nabarro investigated this mechanism more scientifically by considering
interaction between a dislocation and particle. Evaluation of the yield strength by this
mechanism is complex, when randomly distributed precipitates have different sizes
during aging. To advance strengthening equations for simulation of the yield strength, a
set of simplification were applied, which decreased the accuracy of simulations

substantially.

In the present thesis, main focus is put on the development of strengthening equations
based on physical parameters instead of existing phenomenological parameters. In the
following, the highlights of some selected publications of the author are summarized and

discussed briefly.
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KURZFASSUNG

Kurzfassung

Die vorliegende Dissertation beschreibt die Hauptaspekte eines physikalischen Modells
fir Ausscheidungshartung in kristallinen Werkstoffen. Fiir die Evaluierung des Anstiegs
der Streckgrenze wird ein System von Gleichungen abgeleitet, basierend auf der
Interaktion  zwischen  Versetzungen @ und  Ausscheidungen.  Verschiedene
Schermechanismen und Mechanismen ohne Scherung werden, basierend auf den
zugrunde liegenden physikalischen Parametern, kritisch diskutiert. Der in dieser
Dissertation verfolgte Ansatz erlaubt uns auch, Gleichungen fiir die Hartung nicht-
sphéarischer Ausscheidungen zu entwickeln, wobei der effektive Radius von der relativen
Orientierung zwischen Partikel und der Richtung der Versetzungswanderung abhangt.
Die Genauigkeit des Modells wird mittels Simulation der Streckgrenzenentwicklung in

ausscheidungsgeharteter Ni-Basis Superlegierung Allvac® 718PlusTM validiert.
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ABSTRACT

Abstract

The present thesis describes the main aspects of a physical model for precipitation
strengthening in crystalline materials. For evaluation of the yield strength increase, a set
of equations is derived based on the interaction between dislocations and precipitates.
Different shearing and non-shearing mechanisms are discussed critically based on the
underlying physical parameters. The approach followed in this thesis enables us to
develop strengthening equations for non-spherical precipitates, too, where the effective
radius is depending on the relative orientation between particle and the direction of
dislocation movement. The accuracy of the model is verified by simulation of the yield
strength evolution in the precipitation-strengthened Ni-base superalloy Allvac®

718Plus™,
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INTRODUCTION

1 Introduction

Precipitation strengthening (or precipitation hardening) has been discovered more than
hundred years ago by Wilm in Al-alloys containing Cu and Mg (Duralumin) [1]. During
1903-1911, Duralumin became one of the most demanded alloys by industry. The first
fundamental investigations on the mechanism of precipitation and aging of Duralumin
were carried out by Merica et al. [2, 3]. By 1932, more than hundred precipitation
hardening systems with fourteen base metals were explored by these researchers and

reviewed comprehensively by Cahn [4].

The present concept of precipitation hardening is based on the work of Mott and
Nabarro [5] proposed in 1940. In their model, Mott and Nabarro investigated the
interaction between a single dislocation and the internal stress surrounding a particle,
which causes strengthening. In a consistent and comprehensive theory, Orowan [6] first
formulated an equation, which describes the interaction between dislocations and non-
shearing particles. Later, Ashby [7] modified the Orowan equation to the form, which is
currently used most often in calculation of the yield strength increase due to
precipitation. In 1971, Brown and Ham [8] published a comprehensive critical review, in
which they outline some improvement of models for different strengthening
mechanisms. Their work was followed up by Ardell in 1985 [9]. This author proposed
simplifications of previous physical models, in order to use the strengthening equations
more conveniently. For this purpose, phenomenological components in the treatment of
phase fractions and assumptions such as, for instance, distribution of particles with the
same size, were introduced. Some uncertainty in determination of input parameters
remained, however, such as the dislocation type (edge or screw) or chemical energies

and the shear modulus of precipitates.

In the present thesis, focus is put on a deeper understanding of the interplay of physical
parameters in the original models. Additionally, new developments of physical
parameters, such as, a recent description of the 2D distance between randomly arranged
particles by Sonderegger et al. [10], are incorporated in the yield strength expressions.
The conventional strengthening equations of coherent and strong precipitates, as
proposed by Brown and Ham [8], are modified and strengthening equations for non-

spherical precipitates are developed [11]. Finally, a comprehensive set of equations is
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presented for a predictive evaluation of the yield strength and verified on example of the

Ni-base superalloy Allvac® 718Plus™ during aging.




PRECIPITATION STRENGTHENING MODEL

2 The precipitation strengthening model

In this section, the basic concepts behind our strengthening model are formulated in
terms of the dislocation line tension and resistance force caused by precipitates. For a
quantitative description of the dislocation - particle interaction, energy changes along

the dislocation and inside and around the precipitate are the key input quantities.

2.1 Dislocation line tension T

For the evaluation of the dislocation line tension, first, the energy content of a linear
dislocation in an isotropic elastic crystal far from the surface and other dislocations is
formulated. In this case, the dislocation energy depends on the orientation of the
dislocation in the crystal. The dislocation line tension, counted per unit length of

dislocation, has been calculated by Cottrell [12] and Foreman [13] as

E(H):sz(l—u(cosﬁ)zjln(r_oj, n

47 1-v

where G is the shear modulus, 6 is the angle between the dislocation line and its Burgers
vector, b is the magnitude of the Burgers vector, v is Poisson's ratio, and r, is the outer
cut-off distance. r, is the distance to the closest parallel dislocation of opposite sign,
which is the distance between two particles along the dislocation line for shearable
precipitates [8, 9] and the average planar particle diameter for non-shearable
precipitates [7, 9]. ri is the inner cut-off distance, which is the dislocation core radius
with values between b and 4b [9]. The energy of the dislocation, E(6), is a function of the
angle O between the Burgers vector and the tangent to the dislocation line. Since 6=0 for
screw dislocations and 6=m/2 for edge dislocations, the character of a dislocation
determines its energy. Eq. (1) shows that an edge dislocation stores more energy

compared to a screw dislocation.

The difference between the dislocation energy and the line tension, T(6), which also

depends on 6, according to the relation given by Brown and Ham [8] is proposed as

, (2)

and, finally,
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4 1-v 7

1

T(¢9)=Gb2 (1+u—3u(sin«9)2]1n(r_o} 3)

In the following treatment, the symbol T for T(6) is used and the angle dependence for

the sake of brevity is omitted explicitly in writing.

2.2 Interaction between dislocations and precipitates

The process of bowing out of a dislocation between spherical precipitates as a
consequence of an external shear force is described by the equilibrium between the line
tension T of the dislocation, the dislocation bending angle (outer cut-off angle) ¥ and the
critical resolved shear stress t with the precipitate resistance force F. According to [8],

this equilibrium, which is shown in Fig. 1, is expressed as
v
rbL:2TcosE:F. (4)

In this equation, 7 is the external shear stress and L is the distance between two particles

along the dislocation.

P \|
42 | L
) /2 |
T
/
Q)
T

Fig. 1. Balance force between a precipitate and a dislocation

2.3 Shearing mechanisms

When dislocations enter and shear (cut) a spherical precipitate, the maximum resistance

force exerted by the precipitate is proportional to the projection of the dislocation line
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tension in the direction of movement Fm=2TCOS(SUC/2), as depicted in Fig. 1. If the

critical outer cut-off angle is between 120°<¥c<180°, a particle is denoted as weak and
shearable. Between 0°< ¥.<120°, the particle is considered as strong and shearable. The

angle ¥, strongly depends on the size of the particle and dislocation character.

For weak and shearable particles, it is assumed that ¢.=sin ¢ = ds/R, where R is the
radius of the dislocation curvature at the critical breaking stress. Accordingly, Eq. (4) is

simplified (see Fig. 1) as

T= = cos& . (5)
bL 2

In this equation, Lefr is the distance between two precipitates along the dislocation in the
critical configuration for weak and shearable particles. Lefr is different from the surface
to surface distance between two particles, Ls, because, for weak and shearable
precipitates, dislocations cut the precipitates when the outer cut-off angle is between
120°< Y. <180° and are released from the particle sooner. Consequently, the distance
between two precipitates is increased along the dislocation, and Lefr > Ls. This effect is

shown schematically in Fig. 2.

L=Lg
\n
/¥
0° < v, <120° 120° <y, < 180°
Strong precipitate Weak precipitate
(Y] (B)

Fig. 2. Free distance between two precipitates along dislocation line in a random array. (a) The

precipitates are shearable and strong. (b) The precipitates are shearable and weak.

The relation between Ls and Lefr has been evaluated by Friedel [14] between too small

particles with
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1
L =Ly [cos y; }2 : (6)

Using Egs. (4)-(6), one obtains

3
2
2[R, ] )
bL | 2T

Eq. (7) represents a general relation, which is used to express the shear stress according
to different strengthening mechanisms for weak and shearable precipitates. Eq. (4) is
applicable for strong and shearable precipitates by assuming L = Ls at the critical value
when ¥ = ¥ (see Fig. 2(A)) as

2T v./2 F
__2feos(v./2)

=J—. 8
bl b, ®

S S

Fm corresponds to the maximum resistance force of precipitates that can be achieved
and it is formulated for different strengthening mechanisms contributing to shearing,

subsequently.

In this equation, the parameter J is a correction coefficient, which depends on the mean
free distance between particles. A value of /J=0.8 is used, based on the Ashby model [7]
for random arrangement of particles instead of particles in an ordered, periodic
arrangement. Using the Sonderegger model [10], the free distance Ls between two
particles can alternatively be calculated from Egs. (38)-(39), later. A constant value of

J=1is used in this case.

2.3.1 Coherency effect

If a precipitate is embedded coherently in some given matrix phase, the difference
between lattice parameters of matrix and precipitate produces a strain field, which
potentially interacts with a moving dislocation. Depending on the magnitude of misfit,
this mechanism often provides the most important strengthening contribution for

coherent particles.
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2.3.1.1 Weak and shearable precipitates

Gerold and Haberkorn [15] proposed a strengthening model for weak and shearable
precipitates based on isotropic elasticity theory. Accordingly, the force F between a

straight dislocation and a spherical coherent precipitate on a slip plane is

F(ij —4Gb g;;((ij, (9)
r r

with
P AT (10)
3\-v)a 3

Here, ¢ is the constrained strain produced by the stress free strain of lattice misfit § [16],

a is the lattice parameter of the matrix, 7 is the mean radius of precipitates and 4a is the

difference between lattice parameters of matrix and precipitate. )((Z/ r) is a function

depending on the interaction between the dislocation in the slip plane and the

precipitate. z denotes the distance between the slip plane and the precipitate center. The

values of the }((Z/ I_”) function can be expressed by the following functions for an edge

dislocation [15],

G- (s

G v e

303 o e

jZL (14)




PRECIPITATION STRENGTHENING MODEL

By applying the Pythagorean mixture law, as proposed by Brown and Ham [8], and
combining Eqgs. (7) and (9), strengthening due to the coherency misfit mechanism for
weak and shearable precipitates from center of the precipitate up to infinity can finally

be expressed as [17]

1 % z\dz
2 3
Feohwesk =22 2TL i %JT' (15)

For an edge dislocation,

1

3, 3(2F )2

Z-Cohweak = 592G bg (r> ) (16)
’ 35 L2T(x/2)

and for a screw dislocation,

1
06 be(r) |
===\ 7 | 17
7’-Coh,weak {5 Li T(O) ( )

2.3.1.2 Strong and shearable precipitates

Eq. (15) is used to describe the effect of coherency strain when the size of the
precipitates is small or the outer cut-off angle is higher than 120°. In the case of large
precipitates, which can bend dislocations to angles below 120°, the Friedel relation, Eq.
(6), is no longer valid for Egs. (15)-(17). The concept of strong precipitates is also

dependent on the position of the dislocation in the slip plane with respect to the

precipitate (z value). For example, at (Z/ 1_”)=0, a large precipitate acts as weak and
shearable. When the (Z/ I_’) parameter is confined between
(T/(4ng7_f))£ (Z/;')S (31'5 G<9b7_f/(4T))0'5 for edge dislocations, and
(T /(ng;))é (z/ ;)S (Gé‘bl_"/(T ))05 for screw dislocations, precipitates have the capability

of producing the bending condition corresponding to a strong precipitate.

In Fig. 3, three different regions, A, B and C, are distinguished to describe the interaction
between a screw dislocation and a large precipitate, where region B is strong and

shearable, and regions A and C are weak and shearable.
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F=2T

[z/r]max

(Z/ r}min

Force

Fig. 3. Resistance force of small and large precipitates, schematically. The interaction between
large precipitates and a dislocation produces two ‘weak’ regions (A and C) and one ‘strong’

region (B).

Ignoring the effect of the coherency and weak mechanism (c-w) in regions A and C,
Brown and Ham [8] proposed an expression for the shear stress increment of strong

precipitates, where ¥ is close to 0° but the precipitate still acts as shearable, as [18]

MT 1 MT |3 1
Famssin = W) =0 LT L0 (19
with
o) =225, (19)
T
and

2
2\ r
=== =]. 20
()] @
f1is the precipitate phase fraction. M is a constant equal to 2 and 21/2X 33/8 for screw and

edge dislocations, respectively.

Considering the strengthening effect due to the regions A and C delivers a correction

factor [18] for the shear stress of large precipitates for both, edge and screw dislocations

with
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1Y
Z-tota] = ﬁ + 1 X z-strong,B&H ’ (21)

where g is a variable between one and two. Eq. (21) shows that identical correction
terms of the simplified model description for the yield strength increment of strong

precipitates is required for both screw and edge dislocations.

Consequently, the Brown and Ham equation (Eq. (18)) needs a modification to reflect
these contributions. If one accepts /] = 0.81 as a correction factor for randomly
distributed precipitates in a slip plane, and g=1.4 for the mixture of contributions from
weak and strong mechanisms [9], the strengthening equation for strong coherent
precipitates from Brown and Ham [8] significantly underestimates the strengthening

contribution by ~ 30%. This aspect is discussed in detail in ref. [18].

2.3.2 Modulus effect

When a dislocation passes through a precipitate, the dislocation energies inside and
outside the precipitate are different due to different chemical composition and/or
crystal structure of precipitate and matrix. In 1962, Siems et al. [19] used Snell’s Law to

explain this mechanism based on the condition
Usinag, =U,sina,. (22)

In this equation, U; and U are the dislocation energy inside the precipitate and the
matrix, respectively. a1 and a; represent the angles between the dislocation and the

normal of the precipitate/matrix interface. This is shown schematically in Fig. 4.

Dislocation

!
‘ay

[> Y =2a,

(B)

Precipitate
(4)

Fig. 4. Dislocation treatment inside precipitate, when Young’s modulus of the precipitate is

lower than Young’s modulus of the matrix.

10
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In the Siems et al. model [20], the dislocation energy inside the precipitate is assumed to
be lower than that in the matrix (U1 < Uz). The yield strength increment, due to the weak

and shearable conditions, is [21]

3
2T U2\
T =1 =] . 23
Mod, weak bLs |: (Uzz J:| ( )
and for strong and shearable precipitates [21], we get
1
2T U2
T =J—1-| =] . 24
Mod,strong bLS |: LUZZ ]i| ( )
with
E, logr—s logr—"
U, r 7,
—= + . (25)
g r
2 Elog-> log—*
A .

1 1

In this equation, r;s is the equivalent precipitate radius defined in different models. This
will be further discussed later. Ej, is the energy of a dislocation per unit length in infinite

media of precipitate.

In 1983, Nembach [22] considered modulus strengthening numerically by evaluating the
interaction force between a dislocation and a spherical precipitate with different shear

modulus from the matrix. In this model, the maximum interaction force becomes
2 rs wz
F,=w|G, -G|b =] (26)

where w; and w, are constants representing the dislocation core energy inside and
outside the precipitate. Depending on the models used in [22], w; varies from 0.0175 to
0.0722. w, adopts a value of 0.81+£0.09. By replacing the force in Eqgs. (7) and (8) with Fn
in Eq. (26), the shear stress according to the weak and strong modulus mechanism will

be defined.

11
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In the model of Nembach [22], the absolute value of the difference in shear modules
between precipitate and matrix enters the equation. Consequently, this model applies to

both situations, where the modulus of the precipitate is larger or smaller, as well.

2.3.3 Chemical effects

Dislocations entering a particle lead to breaking of chemical bonds. The rearrangement
of chemical bonds into a different local chemical environment leads to strengthening.
Generally, this effect is denoted as chemical strengthening. It is commonly distinguished

between anti-phase boundary, stacking fault and interfacial effects.

2.3.3.1 Anti-phase boundary effect

If particles in a matrix show chemical ordering, the anti-phase boundary effect often
represents the major strengthening mechanism. When a dislocation passes through an
ordered precipitate, it destroys the periodic atomic arrangement in its slip plane. The

disordered plane, which is left behind, is called anti-phase boundary (APB).

In ordered crystal structures, the shearing dislocations travel in groups, where the
number of dislocations in a group depends on the type of order structure (e.g. face-
centered cubic L1, tetragonal D032). This observation is important for the interpretation
of the ability of precipitates to restore to the perfect order structure after the
precipitate-dislocation interaction. The first dislocation, which is denoted as leading
dislocation, creates an anti-phase boundary in the precipitate. The second one, which is
called trailing dislocation, compensates the effect of the first one and restores the
ordered structure again. Depending on the size of the precipitate, two regimes are

distinguished.
2.3.3.1.1 Weak and shearable precipitates

This regime is operative if the precipitates are small, i.e. the outer cut-off angle is ¥,
>120° The disordered precipitates stimulate the trailing dislocations towards the
leading dislocation. This compensates, partly, the APB strengthening effect of the leading
dislocation. The strengthening equation for the APB effect can be expressed by using Eq.
(27) with Fn=2yapg rs as [17]

12
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3
2127 (27T, |2 v
T N SR — £ . 27
APB,weak P b LS |: 2 T ﬂé/ L ( )

S

where yapp is the anti-phase boundary energy of the precipitate and £ is a constant
between 0.0 and 1.0. S is close to 1.0 when the trailing dislocation is straight. s is the
number of pair dislocations in the group and the function G(rs/Ls) corresponds to the
pulling tension of precipitates on the trailing dislocation. It is given as [23]

r 16 7 apg r’
S |= L LAPBTs 28
g(L ] 3z bL: (28)

2.3.3.1.2 Strong and shearable precipitates

When the precipitates are large, application of Eq. (27) becomes critical because the
precipitates produce a high APB force. Hiither and Reppich [24] obtained a general

expression for strong and shearable ordered particles as

1
2VT \(7mwy pp 1, 2
TAPB,strong = (ﬂ'b Ls ]( 1}41’; - lj ) (29)

where V is a parameter introduced for remaining dislocation segments incorporating

also some other uncertainties. Its value is assumed to be 2.8 in ref. [25].

2.3.3.2 Stacking fault effect

In some crystalline materials, the dislocation energy of a single dislocation can be
reduced by dissociation into two partial dislocations. This process leads to a stacking
fault (SF) in the slip plane between the partial dislocations 1 (P.1) and 2 (P.2). When the
stacking fault energy (SFE) of the precipitate is lower than that of the matrix, the width
of the ribbon band between two partials inside and outside of the precipitate differs.
This difference produces a retarding force in front of the dislocation movement, which
depends on the precipitate size and the width of the stacking fault in the matrix W, and

inside the precipitate W,. Hirsch and Kelley [26] derived the maximum force as

We%‘f E
Fm:2(7SFM_7SFP) Wee 1y — 4 ) (30)

13
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W :2K—w) ’ (31)
(7SFM + 7SFP)
K(0)= Gglféz__ul)))(l -2 ”(;O_SI(JZ)H)) (32)

Wetr is the distance between P.1 and P.2, when P.1 is located at the precipitate
circumference, K(6) is the elastic energy per unit length between two partial
dislocations and b, is the magnitude of the Burgers vector in the precipitate. On
replacing Fr, in Eqgs. (7) and (8) by Eq. (30), finally, the yield stress increment for the

weak mechanism is obtained.

2.3.3.3 Interfacial effect

When a dislocation cuts a coherent precipitate, two new ledges form. One is created
after entering the precipitate, the other one after leaving it. These ledges cause an
increment in the interfacial area in these regions. The maximum force related to this
mechanism is expressed by Fn=2yirg b [9], where yzg is the energy of the precipitate-
matrix interface created by dislocation slip. Replacing Fi, in Egs. (7) and (8) delivers the

yield strength increment due to the interfacial effect.

2.4 Non-Shearing mechanism

Ashby [7] suggested a widely used expression for the ultimate shear stress related to
non-shearable precipitates. He introduced simplifying assumptions for the outer cut-off
radius of the precipitate into the original Orowan equation and, furthermore, made
assumptions on the dislocation character. Ashby considered the exact shape of the
dislocation when a dislocation approaches a Frank-Read configuration between two
precipitates. In this situation, which is shown in Fig. 1, the dislocation escapes the
precipitate as soon as the outer cut-off radius reaches an angle of ¥=0. Brown and Ham
[8] approximated the condition of randomly distributed obstacles and formulated the
critical shear stress as,

_ Jz[E(o).E(;z/z)]°'5_

TOrowan b L

N

(33)

14
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Insertion of Eq. (1) with 8=0 and 6=1t/2 in Eq. (33) restores the well-known Orowan

equation, which is,

z-Omwan = JGb ln 2’/‘? . (34)
2z1-v L, \ n

1

15
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3 Discussion

The present set of strengthening equations shows that the maximum shear stress before
yielding depends on the dislocation line tension T, the mean distance between two
particles, the precipitate resistance force F, which is a function of precipitate radius or
outer cut-off radius, and the particular strengthening mechanism. In contrast,
conventional strengthening equations are often functions of the mean radius, phase
fraction as well as physical and phenomenological coefficients [6-9, 15, 21-23, 27, 28].
When substituting the actual precipitate distribution by only the mean radius and phase
fraction of precipitates, the calculated yield strength increments can become
substantially different from experimental results. The differences usually arise from
simplifications in the development of the strengthening equations. The most prominent

are displayed in Fig. 5.

Input parameters in strengthening equations

| Variables: L, T(8), E(6), E,(8), N,, , U;, U, |

I Physical constants: a (a,), b (b,), G (G,), S, ¥arw Yire ¥sp U (V) |

| Coefficients: J, V, f, w,, w, |

h 4 v

Conventional strengthening models Physical model
Ref. [6-9, 15, 21-23, 27, 28] l

l In an ideal model:

Simplifications: 1- Strengthening equations can be developed for non-
spherical precipitates [10, 11, 29]

2- T(8) and E(#) change during aging

3- Precipitates are randomly distributed in matrix [10]

4- Precipitates have different size [10]

5- There are no phenomenological parameters like f

|

Strengthening equations:

1- Precipitates are spherical

2- T(#) is constant

3- Precipitates are in square array
4- Precipitates have equal size

5- L is replaced by phase fraction f

v
Strengthening equations: t=f(r, L, T, constants)
T=f(6,L)
L=f(N,,r)

= f (r, f, constants)

Fig. 5. Evolution of yield strength equations in conventional and physical model

For a predictive simulation of the total shear stress, refining the values of input variables
instead of changing and adapting phenomenological coefficients in order to close the gap
between experimental and simulation results are proposed. In a survey for evaluation of

final yield strength in binary Ni-Al system, Ardell and Huang [30] have listed eight
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different values between 0.129 J/m=2 and 0.188 ]J/m2 for the anti-phase boundary
energy (yaes) of Yy from different references, while Douin et al. [31] measured

yape=0.111]/m2 by using weak-beam electron microscopy.

In the present model, the strengthening equations are connected to the incipient
physical parameters, which are varying during aging and unnecessary simplifications

commonly used in conventional models are avoided. This is discussed in detail later.

3.1 Non-spherical precipitates

In some precipitation strengthening systems, for instance, Al-Mg-Si, Al-Cu, Al-Cu-Mg, Al-
Zn-Mg and some Ni-base superalloys (Inconel 718, Rene 62, Udimet 630), precipitates
are non-spherical. For these cases, the conventional strengthening equations are not
applicable and it is difficult to advance these equations on a rigorous basis as long as
they contain purely phenomenological parameters. Three different approaches are

reported in literatures to simulate the yield strength for non-spherical precipitates:

(i) Myhr et al. [32], in the Al-Mg-Si system, assumed that prolate precipitates are
spherical and applied conventional strengthening equations, thus simply ignoring the

shape effect.

(ii) Nie and Muddle [33] modified the Orowan equation, Egs. (33)-(34), for cylindrical
disc shape precipitates in the Al-Cu-Sn system by using a stereological method. They
assumed that the aspect ratio is higher that 40 (diameter / thickness) and simulated the
yield strength increment based on this assumption. In their model, they assumed that
the precipitates are not shearable at all and ignored all shearing mechanisms. This
model has been developed for rod shape precipitates in aluminum and magnesium

alloys, too [34, 35].

(iii) Computer simulations of moving dislocations in their slip plane were used in the
method of Zhu and Starke [36], where the moving dislocations are crossing rod-shape
particles elongated in (100) direction or circular platelet particles extended in the {100}
planes [37-39]. Similar to Nie and Muddle [33], this method does not account for the

case of coherent and shearable precipitates.

In our approach, as outlined in section 2, the strengthening equations are functions of

physical parameters only, which can straightforwardly be advanced for prolate and
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oblate precipitates considering all shearing and non-shearing strengthening

mechanisms [11, 29].

3.2 Dislocation line tension

The dislocation line tension varies in the course of particle aging processes due to
changes in the mean free distance between two particles along the dislocation line and
the angle between the dislocation line with the Burgers vector 8 due to the dislocation

bending behind a particle [40].

In the early stages of aging, precipitates are considered as being weak and the
dislocation character remains unaffected when the dislocation is nearly straight. Once
the precipitates grow, the dislocation character changes during bending behind the
strong precipitates. Dieter [40] measured the dislocation energy per unit length based
on Eq. (1) in annealed crystals. He assumed that r, = 107 m and r; =2-10-10 m; then
In(ro/ri)=2m. After replacing the parameters for outer and inner cut-off radius and using
v=1/3, the resulting dislocation energies for screw and edge dislocations become
E(0)=(1/2)Gb? and E(mt/2)=(3/4)GDb?, respectively. In the same way, using Eq. (3), the
dislocation line tension for screw and edge dislocations are T(0)=Gb? and
T(m/2)=(1/4)Gb?, respectively. In contrast, Ardell [9] proposed In(ro/ri)4 at peak
strength. These different assumptions in conventional models produce rather large
differences in the absolute value of the strengthening effect, thus indicating that the
dislocation line tension is a critical parameter for precipitation strengthening. For
simulation of the yield strength, the dislocation line tension is proposed to be

T=(1/2)Gb? in Refs.[ 8,9, 15, 21, 24, 26, 39].

In practical simulation, accurate result can only be obtained after performing a thorough
characterization of the dislocation character, which is a mixture of edge or screw, and by
accurately determining the free distance between two particles. Both these parameters

are dynamic in nature and vary during aging.

18



DISCUSSION

3.3 Free distance between precipitates

3.3.1 Spherical precipitates

The free distance between two particles is a crucial input quantity in precipitation
strengthening theory. In his early model, Ashby [7] assumed that all precipitates have
the same size and that they are distributed on a square array without preferential point
for nucleation. Based on these assumptions, the free distance between two precipitates,

Ls, is represented as [7]

N
L _L/V 2%]' (35)

where Ls. is the surface to surface distance between two particles located in the square
arrangement and N;s is the number of particles, which intersect unit area of slip plane.

The relation between Ns and the number of particles per unit volume of the matrix, Ny, is
Ns=2 r N.. (36)

Whereas the square array is a reasonable approximation of the real situation for many
alloy systems, in other precipitation hardening materials, such as aluminum alloys
AA2xxx and AA6xxx or y’-hardened superalloys, precipitates nucleate in a close-packed
triangular array [41]. In this case, Lsc should be modified to the following form, where
the surface to surface distance between two particles located in triangular arrangement,

Ls,t ) IS

L)

In general, strengthening models based on Egs. (35) and (37) (see the work of Russell

s,t

and Brown [21], Kelly [42] and Fullman [43]) are physically correct when the ordered

precipitates have same sizes. However, their accuracy decreases for small particles with
r<0.047, where r is the mean radius of the precipitate distribution. Moreover, when

being applicable for r<0.04 7, the results are not satisfying at . The phase fraction of
precipitates has a similar effect on the free distance of two particles. In a numerical

analysis, Sonderegger et al. [10] simulated the shearing of particles in the dislocation
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slip plane for 105 randomly distributed precipitates in 100 size classes in volume. They
calculated the free distance distribution between two particles by varying radius at
constant phase fraction and vice versa. Their simulation result showed that the
deviation between classical models and numerical simulation could be 70% and more

for the classical models.

These authors presented an alternative model for arbitrary precipitate sizes and
randomly distributed particles in a matrix. In this model, precipitates are divided into
discrete size classes. Each class contains precipitates from within a specific radius
interval, r, and a number density of particles, n,.. A general formulation for the free

distance between two particles in the slip plane is derived as

In 3 2
L= |———+(2 -2r,, 38
N \/2 T Z I’lv’cl"c + ( ]/jvs ) ]/jvs ( )

and

2 znv,crcz
N e (39)

3 va’crc
where rg is the mean projected radius. The Sonderegger et al. model delivers more
accurate results for various size distributions and different phase fractions. The
difference in free distance between two particles obtained from Eq. (38) and numerical

analysis described in Ref. [10] is in all cases less than 30%.

3.3.2 Non-spherical precipitates

Egs. (38) and (39) have been established for spherical particles. For ellipsoid
precipitates in fcc structure, Sonderegger and Kozeschnik [29] introduced a correction

factor for As, depending on a shape factor h, as

-1

1 2\7
L =h6.(2+3h] L, (40)

s,ell
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=<
a (41)
where Lsen is the free distance between two ellipsoidal precipitates. c is the half axes of
the particle parallel to its rotational axes and a is the according half length
perpendicular to the rotational axes. In this model, precipitates can be rotational needle-
shaped ellipsoids (prolate particles), which are elongated in <100> directions, or

rotational lens-shaped ellipsoids (oblate particles) elongated in {100} planes.
3.4 Equivalent radius

3.4.1 Spherical precipitates

The spatial extension of the interfering part between a dislocation and a precipitate, the
so-called equivalent radius, varies between 0 and the radius of the precipitate. There are
two approaches to measure the equivalent radius, one by Ardell [9] and the second by
Brown & Ham [8]. Ardell considered the projection of the precipitate onto a plane
perpendicular to the slip plane of the dislocations. The resulting geometric figure is a
circle with radius r and area mr?. Ardell then replaced this circle by a rectangle with the
same area and same height in z direction. The average planar radius in this model is then
-

Voo = Zr. (42)

In the Brown and Ham approach, the volume effect is taken into account. Brown and
Ham replaced the spherical precipitate by a cylindrical precipitate with the same volume
(4/3 mr3) and same height in z direction. The mean radius of the circular section in the

dislocation slip plane in this model is [8, 28]

=g;. (43)

3.4.2 Non-spherical precipitates
3.4.2.1 Shearing mechanism

Egs. (42) and (43) are applicable for spherical particles, but, in fact, precipitates often

have different shapes and orientations. Examples for fcc-structured non-spherical
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precipitates are 3" needles oriented in <100> directions in aluminum 6xxx series, and 6"
and y” precipitates extended in {100} planes in aluminum 2xxx series and Inconel 718,
respectively. In the present modeling, the needle-shaped particles in an fcc-structure are
described by the prolate-type precipitate in <100> directions (h>c/a) and the lens-shape
precipitates are represented by oblate-type extending in {100} planes (h<c/a) [11].

In the case, where an edge or screw dislocation encounters each precipitate orientation

with the same probability, the average mean values @weq are found as

— 1 3 6 2
a)e,eeh: — —+2 — h3 ) 4‘4‘
actee () {3{\/2%2 \/1+5h2} }r“ (44)

— 1|1 2
a)eq,screw (h):{§|:z+2 1+ h2 :|h

g)eq (l’l) = 1)1 g)eq,edge (h) + 1)2 g)eq,screw (h) ) (46)

: } (45)

where ®cqedge(h) and @eqserew (1) are referred to as the effective equivalent radius in front of

edge and screw dislocations in the slip plane, respectively, and P: and P; are the

fractions of edge and screw dislocations, respectively.

Eq. (46) defines a coefficient for ellipsoidal precipitates for the shearing mechanism.

Replacing rs by a)eq(h) in strengthening equations introduces a more general relation,

which is applicable for spherical precipitates, too [11].
3.4.2.2 Non-shearing mechanism

In the non-shearing mechanism (Orowan mechanism), dislocations are blocked in front
of the precipitates and do not shear them. Consequently, the precipitate-dislocation
interaction is independent of the intrinsic precipitate properties. The outer cut-off
radius, Req, is the full width of the particles cross-section normal to the direction of

dislocation movement.

The geometry of the particles relative to the moving dislocations for the Orowan
mechanism is the same as for the shearing mechanism, which leads to mean outer cut-

off radii of
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- 1 3 3 3 2
Req,edge(h):{§|:\/2+h2 +\/h—2+mj|h3}2rsx (47)

2
Req,screw (h):{l|: 1 + ? +l} hS}zrs (48)

3IVA2 244 h

Eeq (h) = 1)1 Eeq,edge(h) + I)Z I_eeq,screw(h) . (49)

where Regedge(/) and Reqscrew (£) are referred to as the equivalent outer cut-off radii in front

of edge and screw dislocations in the slip plane, respectively.

Eq. (49) defines a coefficient for ellipsoidal precipitates in the Orowan mechanism.
Replacing 2rs by I_Qeq(h) in Eq. (34) provides a general equation, which is applicable for

spherical and ellipsoidal precipitates.

3.5 Superposition of strengthening mechanisms

In precipitation-strengthened multi-component and/or multi-phase materials, the
different nature and size of particles will lead to a situation where the total
strengthening effect is given by a mixture of different strengthening mechanisms. Even
with just one kind of precipitate, a distribution of particle sizes in different slip planes of
dislocations must be expected, thus, representing a situation where each precipitate has
different strengthening potential and the total strength contribution must in some way

be superposed.

For a prediction of the combined effect of all individual strengthening contributions,
several investigations have been performed and various approaches exist [8-11, 45-46].

The basic result of these studies can be lumped up in the superposition expression
¢ —N" Az
Total = i=1 i, (50)

where g is an exponent, which commonly lies between 1 and 2. Eq. (50) delivers the
shear stress of a precipitation-strengthened material with a mixture of operative

strengthening mechanisms.
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Numerical studies of Forman and Makin [47] for two types of obstacles with the same
strength provide good agreement to the overall strength with a value of g=2
(Pythagorean superposition). The same result is also proposed by Koppenaal [46]. In
another investigation, Ardell [9] applied computer simulations to determine the value of
q for a mixture of two randomly distributed precipitate populations with distinct
strength. He proposed that, for a combination of just weak mechanisms (WM) or just
strong mechanisms (SM), g should be chosen close to 1.8. Otherwise, when two different
mechanisms of weak and strong type are acting together, g should be given a value close
to 1.4. Merging of weak and strong mechanisms in a multi-particle system (1, 2, ...) is

demonstrated in Fig. 6 for the simplified case of only two particle types.

Particle 1 Particle 2

| |
| Shearing Mechanism ” Orowan

| 1
Weak Mechanisms (WM)|| Strong Mechanisms (SM)

coherency-weak I coherency-strong

Modulus-weak | Modulus-strong

SF-weak | SF-strong

| | |

| | | {

| APB-weak | | APB-strong | | wM ” sM ” Orowanl
| | |

| I |

Interfacial-weak l Interfacial-strong

qx1.8 q=1.8

v v Vv v

Lower value

I3

Lower value

h 4

No No

WM > SM, Orowan WM > SM, Orowan

| S A | P | |

Particle C’article Particle [ [Particle Particle [ [ Particle Particle( Particle(

1 (Yes) 2 (Yes) 1 (No) 2 (No) 1 (Yes) 2 (No) 1 (No) 2 (Yes)
| q~1.8 [ ] q~1.8 [ | q~1.4 [ | q~1.4 |
" o S N
Tiotal = T1 + T, + T3 +

Fig. 6. Combination of different strengthening weak mechanisms (WM) and strong mechanisms

(SM) in a single or multi-particle system.
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In this figure, the g value for the weak and shearable mechanism and the strong and
shearable mechanism is approximately 1.8. The operative strengthening mechanism for
a specific precipitate is the one with lower strength among the weak mechanisms (WM),
strong mechanisms (SM) and the Orowan mechanism. When there are different particles
in the matrix, the mixture law of Ardell [9] should be used. As shown in the flowchart, g
is 1.8 when the operative strengthening mechanism in different particles is the WM. In
the same way, g is 1.8, when the operative strengthening mechanism in different
particles is SM or Orowan. For the combination of WM with SM or Orowan, q is 1.4. In
the present study, this procedure is utilized for superposition of all shearable and non-
shearable effects including coherency, modulus, APB, stacking fault and interfacial

effects.
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4 Yield strength prediction in Ni-base alloy 718Plus

The performance of gas turbines and aero-engines can be improved by increasing the
operating temperature of these devices. Whereas the Ni-base superalloy Inconel 718
shows superior mechanical properties up to 650°C [48], the alloy Allvac® 718Plus™
(hereafter 718Plus) developed by ATI Allvac in 2004 can be operated at even 55K higher
service temperature. For the yield strength modeling, an integrated approach
considering all types of contributions to the final yield strength (oy) is used, which has
been implemented in the solid-state transformation kinetics software MatCalc, version
5.60 (rel 0.005) [49-51].

The composition of 718plus used in this survey is given in table 1.

Table 1: Chemical composition of alloy 718plus.

Al Co Cr Nb C Fe Mo Ti w Ni

%Wt 146 9.13 1742 548 0.028 9.66 2.72 0.71 1.04 balance

A conventional heat treatment process is applied in this work. The specimens are
solution annealed at 975°C for 60 minutes, water quenched and aged at 788°C for

different aging times (1, 5, 10, 25 and 50 hours).

The final yield strength (oy) in this type of annealed crystalline material is constituted by
grain boundary strengthening (oy,), solid solution strengthening (oy,s) and precipitation

strengthening (oy,p), which are simply combined linearly [52] as
O-y - O-y7g + O-y,s + JYsP (51)

In the following, the models for the individual strengthening contributions to oy are

briefly reviewed.

4.1 Grain boundary effect

Grain boundaries act as impenetrable barriers for dislocation movement, and
contribute, together with the friction stress oj, to the yield strength of a crystalline

matrix. This concept was formulated by Hall [53] and expanded by Petch [54] as
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o =0 + klock . (52)

Y-8 1 \/B

oi is the friction stress of the crystal lattice to dislocation movement, kiock is the locking
parameter of grain boundary hardening and D is the grain diameter [40, 54]. Thompson
[55] determined the friction stress of Ni-based superalloys as ¢i=21.8 MPa and
kiock=0.158 MPa m/2. The measured grain size of 718Plus after quenching is
approximately 20 um. Consequently, the grain size effect produces an increment in final

yield strength equal to oyg =56 MPa

4.2 Solid solution strengthening

The common equation describing the solid solution strengthening effect, as reviewed by

Butt [56], is
Oysi = ks,i Cip . (53)

Here, ks;i is a strengthening constant for solute i, C; is the concentration of solute i and p
is a constant often equal to 1/2 [57, 58]. oy,s; defines the yield strength increment due to

solute i.

For evaluation of the yield strength in multicomponent systems, Gypen and Deruyttere
[59] proposed a method to integrate the overall yield strength increment of different

alloying components based on the equation,

o, = (Z(ks,,-c,-” y j (54)

1

where g=2 and p=1/2. Mishima et al. [60] defined ks; experimentally for different
alloying elements in binary systems Ni-X, with X being an element from the transition

metal group. Their results are summarized in table 2.

Table 2 ks; strengthening constants of different alloying elements in Ni, from ref. [60]

Alloying element Al Co Cr Nb C Fe Mo Ti w
Strengthening constant 225 394 337 1183 1061 153 1015 775 977
(MPa At. Fraction-1/2)
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Fig. 7 shows the evolution of the computed solid solution yield strength contributions of
individual alloying elements in 718Plus during isothermal aging at 788°C based on the

results of the thermo-Kkinetic precipitation simulation [61].
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Fig. 7. Computed solid solution yield strength increments of different alloying elements based on

the thermo-kinetic precipitation simulation [61].

4.3 Precipitation strengthening

The precipitation strengthening equations in section 2 build upon knowledge of the
number density and mean radii of precipitates either from experiment or thermo-kinetic
simulation. Accordingly, the yield strength increases roughly proportional to the
precipitate mean radius r and number density Ns, and inversely proportional to the
precipitate free distance Ls. Consequently, the final yield strength after a specific heat
treatment can be evaluated, if the precipitate distribution (number density and radius

distribution) and precipitate properties (lattice mismatch, etc.) are known.
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Fig. 8. Simulation result of (a) mean radii (b) number densities and (c) phase fractions of y' aged

at 788°C compared with experimental TEM results (symbols) [61]

Fig. 9 (a) compares the simulated coherency strengthening effect in the weak and strong

regimes to predictions based on the Orowan mechanism for y' precipitates. The lowest

strengthening value is assumed to define the operative strengthening mechanism, as

outlined in section 3.5. The input parameters of our simulations are summarized in table

3, where the strengthening parameters from the literature as well as parameters

obtained from our present microstructural investigation are listed [61, 62].
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Fig. 9. Simulation result of strengthening in Ni-base superalloy 718plusqaq; (a) coherency effect,

(b) APB effect, (c) modulus effect, (d) interfacial effect, (e) combination of all weak and strong
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shearing mechanisms and (f) contribution of all strengthening components to g,. Results of

compression tests are included (symbols) [61].

Table 3: Strengthening parameters used in the precipitation hardening simulation

parameters values Comments

M (Taylor factor) 2.6 Ref. [63]

G (GPa) 80.1 Ref. [64]

Gp (GPa) 77.8 Ref. [65]

yars (Jm-2) 0.111 Ref. [31]

Yir (Jm2) 0.135-0.16* MatCalc thermodynamic database
6 0.004 Measured [61, 62]

b (nm) 0.254

\Y 0.33

ri 2b

*The interfacial energy is composition- and temperature-dependent

Fig. 9 (b) analyzes the computed individual yield strength increment due to the APB
effect. This effect is stronger than the coherency effect. Somewhere in the middle of the
present heat treatment, the strong mechanism for anti-phase boundary strengthening
replaces the weak mechanism. Fig. 9 (c) shows the yield strength increase due to the
modulus strengthening effect. Since the shear modulus of y' precipitates is close to the
values of the 718Plus matrix (see table 3), this effect makes up for a value of less than 10
MPa. The chemical effect is even more insignificant than the modulus effect; less than 5

MPa strengthening for the weak mechanism is computed (see Fig. 9 (d)).

Fig. 9 (e) illustrates the simulated contributions of weak and strong regimes obtained
from the coherency, APB, modulus and interfacial effects. From the plot, it is evident that
the operative strengthening mechanism in 718Plus aged at 788°C is weak and shearable

at the early aging hours (before 10 hours aging) and non-shearable at prolonged aging.

The experimental total yield strength values, oy, illustrated in Fig. 9 (f) show a maximum
at o0y=1095 MPa after 10 hours. From the simulation results, it can be concluded that,

before 10 hours, nucleation and growth of y' precipitates prevails and, thus, the effect of
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radius increment dominates over the effect of number density decrement during
coarsening. This is also visible by a rapid increase in the volume fraction evolution, Fig. 8
(c), in the first 10 hours. The approximately constant volume fraction of y' is located

inside the region of coarsening, where a yield strength reduction is observed [61, 62].

Fig. 7 gives a clear indication of the relation between solid solution strengthening and
precipitate evolution from nucleation and growth to coarsening. The yield strength due
to constitutional alloying elements of y', such as Nb, Ti and Al decreases at early aging
time up to 10 hours. Afterwards, the concentration of each alloying element in the

matrix becomes almost constant and, thus, also the solid solution strengthening effect.

Fig. 9 (f) summarizes our computed total yield strength evolution, gy, in 718Plus
compared with results from compression tests, as well as the simulated contribution of
individual strengthening contributions from intrinsic strength and grain size effect, solid
solution strengthening and precipitation strengthening during isothermal aging at
788°C. The grain size and intrinsic effects are practically constant because the grain size
is unchanged during aging. The predicted decreased solid solution strengthening during
aging is by far compensated by the amount of precipitation strengthening, which

provides more than 65% of the total yield strength at peak strength [61, 62].

5 Summary

In this thesis, the classical strengthening models for both, shearing and non-shearing,
mechanisms are reviewed, discussed and further developed. Where possible, these
approaches are modified on basis of recent progress in modeling of essential input
parameters for precipitation strengthening with the goal of making the strength

predictions more quantitative and accurate.

The proposed equations are established on basis of physical input parameters. These
are, among others, dislocation character, precipitate radius, outer cut-off radius and
mean free distance between precipitates. Phenomenological parameters are widely

avoided, thus increasing accuracy and predictability of the equations.

The free distance between two precipitates decreases when the precipitate shape deviates from
spherical. This effect generally increases the yield strength of the material. The increase of the
equivalent radius of oblate precipitates in both, shearing and non-shearing mechanisms,

increases the final yield strength. In contrast, the decrease of the equivalent radius of prolate
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precipitates decreases the final yield strength. This negative effect is partially compensated by
the decreasing mean distance between prolate precipitates such that the final yield strength is

close to the one of spherical precipitates.

Different methods are discussed for combination of different strengthening mechanisms in
complex systems to obtain the final yield strength of multi-phase, multi-particle

materials.

Finally, it is demonstrated that the yield strength of the Ni-base superalloy Allvac
718Plus can be accurately predicted over the entire heat treatment cycle. The coupling
of yield strength simulation with thermo-kinetic computation of the precipitate
evolution shows that precipitation strengthening increases significantly with the volume
fraction increase of y' precipitates. At peak strength, the phase fraction of y' becomes
almost constant. Precipitate coarsening during prolonged aging at 788°C has a negative
effect on the final yield strength. The yield strength simulation, which is based on
physical modeling and thermo-kinetic precipitation simulation, suggests that, before 10
hours aging, the operative strengthening mechanism in 718Plus is shearing. Afterwards,

the strengthening is provided by the non-shearing mechanism.
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LIST OF SYMBOLS

List of symbols:

a (ap) Lattice parameter of the matrix (precipitate)
da | a-ap|
b (bp) Magnitude of Burgers vector in matrix (precipitate)

dsr The length of partial dislocation 2 inside precipitate when P.1 is still in circumference

of precipitate

E or E(6) Energy of dislocation per unit length in matrix

E, Energy per unit length of a dislocation in infinite media of precipitate
f phase fraction of precipitate

F Precipitate resistance force

F_Maximum resistance force of precipitate in different mechanisms

G (Gp) Shear modulus of matrix (precipitate)
h aspect ratio of precipitate

J Correction constant for random arrangement of particles instead of ordered, periodic

arrangement (=0.8 or 1)

K(6) is elastic energy per unit length between two partial dislocations
L Distance between two particles along dislocation (General definition)
L center to center distance between two particles

Less Distance between two precipitates along a dislocation at critical configuration of

weak and shearable particles
Ls Surface to surface distance between two particles

Ls Surface to surface distance between two particles in square arrangement of

precipitates

Lss Surface to surface distance between two particles in Sonderegger model [10]
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Ls Surface to surface distance between two particles in a close-packed triangular array
ny,c Number density of particles in each class of precipitates

Ns Number of particles intersecting unit area of slip plane

Ny Number of particles per unit volume of the matrix

P Constant (=0.5)

P1 The fraction of the edge dislocation

P2 The fraction of the screw dislocation

q Variable between one and two

re Specific radius of precipitates in each class

ro Outer cut-off distance

ri Inner cut-off distance

+ Mean radius of precipitates
rs Equivalent radius of precipitate in different models.
rsa Average planar radius in the model of Ardell [9]

rsp Mean radius of circular section in slip plane in the model of Brown & Ham [8]

Req (h) Equivalent outer cut-off radii in front of moving dislocation in non-shearing

mechanism

R The radius of curvature of the dislocation at critical breaking stress
s Number of pair dislocations in the group

T or T(08) Dislocation line tension

U1 Dislocation energy inside the precipitate

Uz Dislocation energy inside the matrix
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I Parameter introduced for remaining dislocation segments and some other

uncertainties

West is distance between P.1 and P.2 when P.1 is located at precipitate circumference
Wi (Wp) width of stacking fault in matrix (precipitate)

X Direction of dislocation movement

Y Dislocation line direction

Z Perpendicular direction to the slip plane

z position of the dislocation in the slip plane with respect to the precipitate center

a1 The angle between dislocation and the normal of the interface in spherical

precipitates inside the precipitate

az The angle between dislocation and the normal of the interface in spherical

precipitates outside the precipitate

B Constant between 0.0 and 1.0

yare Anti-phase boundary energy of precipitate

vire Energy of a matrix-precipitate interface created by dislocation slip
ysem (ysrp) Stacking fault energy of the matrix (precipitate)

@ Angle through dislocation bending behind two precipitate

6 Fractional lattice misfit between an in situ coherent precipitate and matrix
€ Constrained strain

6 Angle between the dislocation line and its Burgers vector

T Critical resolve shear stress (external shear stress)

v (up) Poisson's ratio of matrix (precipitate)

¥ Dislocation bending angle (outer cut-off angle)

Y. Critical outer cut-off angle
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w1 Constant between 0.0175 to 0.0722

w? Constant equal to (=0.81+£0.09)

Meq (h) Effective equivalent radii in front of moving dislocation in shearing mechanism
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In this work, we present a consistent model describing the increase of yield strength caused by precipi-
tation of second phase particles. Shearing and non-shearing mechanisms are accounted for, depending on
the coherency between precipitates and matrix.

The physical key parameters entering the model are critically evaluated on basis of the dislocation line

tension, free distance between two particles and precipitate radius. A set of equations is derived, which

Keywords:

Precipitation strengthening
Shearing mechanism
Precipitate resistance force

describes the yield strength increase due to the interaction between dislocations and precipitates. Based
on coupling equations for the individual strengthening mechanisms, the model allows for a predictive
simulation of the final yield strength caused by precipitation in multi-particle, multi-phase systems. With
the aid of contemporary computational power, the enhanced strengthening equations deliver more accu-

rate results compared to the conventional equations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Precipitation strengthening (or precipitation hardening) has
been discovered more than hundred years ago by Wilm in Al-alloys
containing Cu and Mg (Duralumin) [1]. During 1903-1911, Dural-
umin became one of the most demanded alloys by industry. The
first fundamental investigations on the mechanism of precipitation
and aging of Duralumin were carried out by Merica et al. [2,3]. By
1932, more than hundred precipitation hardening systems with
fourteen base metals were explored by these researchers and
reviewed comprehensively by Cahn [4].

The present concept of precipitation hardening is based on the
work of Mott and Nabarro [5] proposed in 1940. In their model,
Mott and Nabarro investigated the interaction between a single
dislocation and the internal stress surrounding a particle, which
causes strengthening. In a consistent and comprehensive theory,
Orowan [6] first formulated an equation, which describes the
interaction between dislocations and non-shearing particles. Later,
Ashby [7] modified the Orowan equation to the form, which is

* Corresponding author at: Christian Doppler Laboratory for Early Stages of
Precipitation, Institute of Materials Science and Technology, Vienna University of
Technology, Favoritenstr. 9-11/E308, A-1040 Vienna, Austria. Tel.: +43 1 58801
30885; fax: +43 1 58801 30895.

E-mail address: mohammad.ahmadi@tuwien.ac.at (M.R. Ahmadi).

http://dx.doi.org/10.1016/j.commatsci.2014.04.025
0927-0256/© 2014 Elsevier B.V. All rights reserved.

currently used most often in calculation of yield strength increase
due to precipitation. In 1971, Brown and Ham [8] published a com-
prehensive critical review, in which they outline some improve-
ment of models for different strengthening mechanisms. Their
work was followed up by Ardell in 1985 [9]. This author proposed
simplifications of previous physical models, in order to use the
strengthening equations more conveniently. For this purpose, phe-
nomenological components in the treatment of phase fractions and
assumptions such as, for instance, distribution of particles with the
same size, were introduced. Some uncertainty in determination of
input parameters remained, however, such as dislocation type
(edge or screw) or chemical energies and shear modulus of
precipitates.

In the present paper, focus is put on a deeper understanding of
the interplay of physical parameters in the original models. Addi-
tionally, new developments of physical parameters, such as, a
recent description of the 2D distance between randomly arranged
particles by Sonderegger et al. [10], are incorporated in the yield
strength expressions. Finally, a comprehensive set of equations is
presented and investigated in a virtual matrix-precipitate
strengthening system, which accounts for all studied precipitation
strengthening mechanisms simultaneously. In contrast to phe-
nomenological strengthening equations, our approach allows for
the prediction of strengthening for non-spherical precipitates, too
[11].
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Nomenclature

List of symbols

a(ap) lattice parameter of the matrix (precipitate)

Aa la — ap

b (b,)  magnitude of Burgers vector in matrix (precipitate)

dsk the length of partial dislocation 2 (P.2) inside precipitate
when P.1 is still in circumference of precipitate

E or E(0) energy of dislocation per unit length in matrix

E, energy per unit length of a dislocation in infinite media
of precipitate

f phase fraction of precipitate

F precipitate resistance force

Fn maximum resistance force of precipitate in different
mechanisms

G (Gp)  shear modulus of matrix (precipitate)

J correction constant for random arrangement of particles
instead of ordered, periodic arrangement (=0.8 or 1)

K(©) is elastic energy per unit length between two partial
dislocations

L distance between two particles along dislocation (Gen-
eral definition)

Lec center to center distance between two particles

Legr distance between two precipitates along a dislocation at
critical configuration of weak and shearable particles

Ls surface to surface distance between two particles

L surface to surface distance between two particles in
square arrangement of precipitates

Lgs surface to surface distance between two particles in
Sonderegger model [10]

Lot surface to surface distance between two particles in a
close-packed triangular array

Ny, number density of particles in each class of precipitates

N; number of particles intersecting unit area of slip plane

N, number of particles per unit volume of the matrix

q variable between one and two

Te specific radius of precipitates in each class

To outer cut-off distance

Ii inner cut-off distance

r mean radius of precipitates

Is equivalent radius of precipitate in different models.

Tsa average planar radius in the model of Ardell [9]

Tsh mean radius of circular section in slip plane in the mod-
el of Brown and Ham [8]

Tecricweak the critical radius of precipitate in front of edge disloca-
tion where the shear strength mechanism changes from
weak to strong

Tscritweak the critical radius of precipitate in front of screw dislo-
cation where the shear strength mechanism changes
from weak to strong

W, (W) width of stacking fault in matrix (precipitate)

X direction of dislocation movement

Y dislocation line direction

V4 distance between slip plane to precipitate center

o the angle between dislocation and the normal of the
interface in spherical precipitates inside the precipitate

Ol the angle between dislocation and the normal of the
interface in spherical precipitates outside the precipi-
tate

B constant between 0.0 and 1.0

YAPB anti-phase boundary energy of precipitate

YIFE energy of a matrix-precipitate interface created by dis-

Te.crit strong the critical radius of precipitate in front of edge disloca-
tion where the shear and strong mechanism changes to
Orowan mechanism

Ts crit strong the critical radius of precipitate in front of screw dislo-
cation where the strong shear mechanism changes to
Orowan mechanism

R the radius of curvature of the dislocation at critical
breaking stress

Raps elastic interaction force between two strongly paired
dislocations

S number of pair dislocations in the group

T or T(0) dislocation line tension

U, dislocation energy inside the precipitate

U, dislocation energy inside the matrix

%4 parameter introduced for remaining dislocation seg-
ments and some other uncertainties

Wegr is distance between P.1 and P.2 when P.1 is located at

precipitate circumference

location slip
vsem (Vsep) Stacking fault energy of the matrix (precipitate)

D angle through dislocation bending behind two precipi-
tate
é fractional lattice misfit between an in situ coherent pre-

cipitate and matrix

€ constrained strain

0 angle between the dislocation line and its Burgers vec-
tor

T critical resolve shear stress (external shear stress)

v(vp) Poisson’s ratio of matrix (precipitate)

v dislocation bending angle (outer cut-off angle)

Y. critical outer cut-off angle

(o) constant between 0.0175 and 0.0722

Wy constant equal to (=0.81 + 0.09)

2. The precipitation strengthening model

In this section, the basic concepts behind our strengthening
model are formulated in terms of the dislocation line tension and
resistance force caused by precipitates. For a quantitative descrip-
tion of the dislocation - particle interaction, energy changes along
the dislocation, inside and around the precipitate are the key input
quantities.

2.1. Dislocation line tension T
For the evaluation of the dislocation line tension, first, the

energy content of a linear dislocation in an isotropic elastic crystal
far from the surface and other dislocations is formulated. In this

case, the dislocation energy depends on the orientation of the dis-
location in the crystal. The dislocation line tension, counted per
unit length of dislocation, has been calculated by Cottrell [12]
and Foreman [13] as

Gb* (1 — v(cos 6)* o
B0 =% (m) In (?) M

where G is the shear modulus, 0 is the angle between the dislocation
line and its Burgers vector, b is the magnitude of the Burgers vector,
v is Poisson’s ratio, and r, is the outer cut-off distance. r, is the dis-
tance to the closest parallel dislocation of opposite sign, which is
the distance between two particles along the dislocation line for
shearable precipitates [8,9] and the average planar particle diame-
ter for non-shearable precipitates [7,9]. r; is the inner cut-off
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distance, which is the dislocation core radius with values between b
and 4b [9]. The energy of the dislocation, E(9), is a function of the
angle 0 between the Burgers vector and the tangent to the disloca-
tion line. Since 0 = 0 for screw dislocations and 0 = /2 for edge dis-
locations, the character of a dislocation determines its energy. Eq.
(1) shows that an edge dislocation stores more energy compared
to a screw dislocation.

When an anisotropic strain field exists around a dislocation, we
must consider also the dislocation core energy and modify Eq. (1)
depending on the dislocation character and the matrix [14,15].
Clouet et al. [16] determined the dislocation core energy of screw
dislocations in bcc iron with an amount of 14% of the total
dislocation energy. In the present development of strengthening
equations, we consider the dislocation line energy in an isotropic
elastic crystal and neglect the dislocation core energy.

We distinguish between the dislocation energy and the line ten-
sion, T(#), which also depends on 0, according to the relation given
by Brown and Ham [8] as

B d*E(6)
T(0) =E(0) + T (2)
and, finally,
Gb® (1 + v — 3v(sin0)° o
T(0) =4~ (10> In <7> (3)

In the following treatment, we use the symbol T for T(0) and omit
explicitly writing the angle dependence for the sake of brevity.

2.2. Interaction between dislocations and precipitates

The process of bowing out of a dislocation between spherical
precipitates as a consequence of an external shear force is
described by the equilibrium between the line tension T of the dis-
location, the dislocation bending angle (outer cut-off angle) ¥ and
the critical resolved shear stress t with the precipitate resistance
force F. According to [8], this equilibrium, which is shown in
Fig. 1, is expressed as

rbL:ZTcosg:F. (4)

In this equation, 7 is the external shear stress and L is the distance
between two particles along the dislocation.

Fig. 1. Balance force between a precipitate and a dislocation.

2.3. Shearing mechanisms

When dislocations enter and shear (cut) a spherical precipitate,
the maximum resistance force exerted by the precipitate is propor-
tional to the projection of the dislocation line tension in the direc-
tion of movemen F,, = 2T cos (¥./2), as depicted in Fig. 1. If the
critical outer cut-off angle is between 120° < ¥, < 180°, a particle
is denoted as weak and shearable. Between 0° < ¥, < 120°, the
particle is considered as strong and shearable. The angle Y.
strongly depends on the size of the particle and dislocation
character.

For weak and shearable particles, it is assumed that ¢ = sin
¢ = ds/R where R is the radius of the dislocation curvature at the
critical breaking stress. Accordingly, Eq. (4) is simplified (see
Fig. 1) as

COS—-. (5)

In this equation, Lg is the distance between two precipitates along
the dislocation in the critical configuration for weak and shearable
particles. Ly is different from the surface to surface distance
between two particles L, because, for weak and shearable precipi-
tates, dislocations cut the precipitates when the outer cut-off angle
is between 120° < ¥.< 180° and are released from the particle
sooner. Consequently, the distance between two precipitates is
increased along the dislocation, and Leg> Ls. This effect is shown
schematically in Fig. 2.

The relation between L; and L.y has been evaluated by Friedel
[17] between too small particles with

1

Ls = Loy {cos %}2 (6)
Using Eqgs. (4)-(6), one obtains
3
2T [F,]?
=i o] g

Eq. (7) represents a general relation, which is used to express the
shear stress according to different strengthening mechanisms for
weak and shearable precipitates. Eq. (4) is applicable for strong
and shearable precipitates if we assume L = L; at the critical value
when ¥ = ¥, (see Fig. 2(A)) as

_ 2T[cos (¥./2)]  Fn
T—JT—JTLS- (8)

F,, corresponds to the maximum resistance force of precipitates
that can be achieved and it is formulated for different strengthening
mechanisms contributing to shearing, subsequently.

0° <y, <120°
Strong precipitate

(a)

Fig. 2. Free distance between two precipitates along dislocation line in a random
array. (A) The precipitates are shearable and strong and (B) the precipitates are
shearable and weak.

120° < vy, < 180°
Weak precipitate
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In this equation, the parameter J is a correction coefficient,
which depends on the mean free distance between particles. A
value of | = 0.8 is used, based on the Ashby model [7] for random
arrangement of particles instead of particles in an ordered, periodic
arrangement. Using the Sonderegger model [10], the free distance
Ls between two particles can alternatively be calculated from Eqgs.
(49) and (50), later. A constant value of J=1 is then used.

2.3.1. Coherency effect

If a precipitate is embedded coherently in some given matrix
phase, the difference between lattice parameters of matrix and
precipitate produces a strain field, which potentially interacts with
a moving dislocation. Depending on the magnitude of misfit, this
mechanism often provides the most important strengthening con-
tribution for coherent particles.

2.3.1.1. Weak and shearable precipitates. Gerold and Haberkorn [18]
proposed a strengthening model for weak and shearable precipi-
tates based on isotropic elasticity theory. Accordingly, the force F
between a straight dislocation and a spherical coherent precipitate
on a slip plane is

Z _ /Z
F(?> — 4Gbery <F) 9)
With
1/1+v\Aa 2
3*?(170)7@'5" (10)

Here, ¢ is the constrained strain produced by the stress free strain of
lattice misfit 6 [19], a is the lattice parameter of the matrix, 7 is the
mean radius of precipitates and Aa is the difference between lattice
parameters of matrix and precipitate. y(z/7) is a function depending
on the interaction between the dislocation in the slip plane and
the precipitate. z denotes the distance between the slip plane
and the precipitate center. If the slip plane is located in the center
of the precipitate, z=0 and the strain field produced by the upper
side of the slip plane is compensated by the lower part. Conse-
quently, the stress force is balanced on the dislocation from two
sides (F = 0). If the slip plane cuts the precipitate away from its cen-
ter, the y(z/r) function increases and reaches a maximum at

;((\/5/2) =1, for edge and at y(1) =1/2 for screw dislocations.

The values of the y(z/r) function can be expressed by the following
functions for an edge dislocation,

Q=20 v @<} m
Q-20 i (=] o
and for a screw dislocation,

(-3 ¥ ()= m
X(;) :2<];)2 if (15*) z 1. (14)

In consideration of the coherency mechanism, the resistance force
in front of the moving dislocation increases when the dislocation
stays out of the precipitate center defined in Eqs. (11) and (13).
The resistance force decreases smoothly at (z/7) > 1 although there
is no interaction between precipitate and dislocation in the slip
plane as explained by Eqgs. (12) and (14).

By applying the Pythagorean mixture law as proposed by Brown
and Ham [8], and combining Eqgs. (7) and (9), strengthening due to

the coherency misfit mechanism for weak and shearable precipi-
tates from center of the precipitate up to infinity can finally be
expressed as

1 * s/z\dz
2 _ 3 ()22
TCoh.weak - bZL?ZT/O F (f) 7 . (15)
For an edge dislocation,
592 G’be3 ()’ :
T ===, 16
Coh,weak (35 LSZT(TE/Z) ( )
and for a screw dislocation,
1
9 Gb3(r)?)’
Tcohweak = (g W . (17)

2.3.1.2. Strong and shearable precipitates. Eq.(15) is used to describe
the effect of coherency strain when the size of the precipitates is
small or the outer cut-off angle is higher than 120°. In the case of
large precipitates, which can bend dislocations to angles below
120°, the Friedel relation, Eq. (6), is no longer valid for Eqs. (15)-
(17). The concept of strong precipitates is also dependent on the
position of the dislocation in the slip plane with respect to the pre-
cipitate (Z value). For example, at Z=0, a large precipitate acts as
weak and shearable. When the Z parameter is confined between

(T/(4Geb)) < Z < (31-563b(f)3/(4r))°'5 for edge dislocations, and

(T/(Geb)) <Z < (Gf,b(?f/(T))Q5 for screw dislocations, precipi-
tates have the capability of producing the bending condition corre-
sponding to a strong precipitate. Precipitation strengthening can
then be expressed by the following equation for an edge disloca-
tion when it is assumed that the free distance between two parti-
cles is close to the non-shearable condition (L ~ L) [8,20] with

1
1.3 (T (m/2)Ger\*
‘L'Coh.srrong = 2%331% <%> ) (18)
and for a screw dislocation,
1
T3(0)Ger )’
Tcoh,strong = Zi % . (19)
Ls b

2.3.2. Modulus effect

When a dislocation passes through a precipitate, the dislocation
energies inside and outside the precipitate are different due to dif-
ferent chemical composition and/or crystal structure of precipitate
and matrix. In 1962, Siems et al. [21] used Snell’s Law to explain
this mechanism based on the condition

U, sino; = Uy sinag. (20)

Dislocation

Yoy

‘) ¥ =2a,
Precipitate
(a) (b)

Fig. 3. Dislocation treatment inside precipitate, when the Young’s modulus of the
precipitate is lower than the Young’s modulus of the matrix.
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In this equation, U; and U, are the dislocation energy inside the pre-
cipitate and the matrix, respectively. «; and o, represent the angles
between the dislocation and the normal of the precipitate/matrix
interface. This is shown schematically in Fig. 3.

In the Siems et al. model [21], the dislocation energy inside the
precipitate is assumed to be lower than that in the matrix (U; < U;).
In this case, at the final stage of shearing, when the dislocation
wants to escape the precipitate, the breaking angle 2a, is equal
to ¥, and o; = 90° (compare with Fig. 3(B)). Then,

P, =20, =2sin"" <ﬂ> (21)
U,

Similar to the case of coherency strengthening, the outer cut-off

angle ¥, can be in the range of the weak and shearable or strong

and shearable condition, which is discussed in Section 2.3. Substi-

tuting Eq. (21) into Eqgs. (5) and (6) for the weak and shearable con-

ditions, one arrives at [20]

3
2T Ui\ |
TMod,weak - b_LS |:] - (U_§>:| . (22)

Replacing ¥, in Eq. (8) by Eq. (21) for strong and shearable precip-
itates, under the assumption that the free distance between two
particles is close to non-shearable condition (L ~ L) [20], delivers

1
2T Ui\ |*
TMad,srrong :JE |:l - (U_;):| . (23)
S 2

In order to specify the values of U; and U, in Egs. (22) and (23), the
dislocation energy inside the precipitate must be related to the pre-
cipitate radius and energy per unit length of a dislocation in infinite
media of precipitate and matrix. This was done on a numerical basis
by Knowles and Kelly [22], leading to

U, Eplog® logh
U_Z_Elogrr—‘; log?’

(24)

In this equation, r, is the outer cut-off distance, r; is the inner cut-off
distance [23] and r; is the equivalent precipitate radius defined in
different models. This will be further discussed later. E, is the
energy of a dislocation per unit length in infinite media of
precipitate. For a screw dislocation, E,/E is equal to G,/G (shear
modulus of precipitate and matrix) and for an edge dislocation,
the ratio reads

E, Gy(1-v)

E-GI=v)’ (23)
where vy, is the Poisson’s ratio of the precipitate.

In 1983, Nembach [24] considered modulus strengthening
numerically by evaluating the interaction force between a disloca-
tion and a spherical precipitate with different shear modulus from
the matrix. In this model, the maximum interaction force becomes

Fn = 1[Gy — 667 (7). (26)

where w; and w, are constants representing the dislocation core
energy inside and outside the precipitate. Depending on the models
used in [24], w; varies between 0.0175 and 0.0722. w, adopts a
value of 0.81 £0.09. By replacing the force in Eq. (7) with F,, in
Eq. (26), the shear stress according to the weak modulus mecha-
nism becomes

3
. 2T [w1]G, — G|b*(rs/b)*]?
Mod,weak = b_LS 2T )

27)

and replacing F,, in Eq. (8) by Eq. (26) delivers the equivalent
expression for the strong mechanism as

|G, — G|b*(rs/b)™
TMod strong =] ]| k bL (rs/b) . (28)

In these formulations, the absolute value of the difference in shear
modules between precipitate and matrix enters the equation. Con-
sequently, this model applies to both situations where the modulus
of the precipitate is larger or smaller as well.

2.3.3. Anti-phase boundary effect

Dislocations entering a particle lead to breaking of chemical
bonds. The rearrangement of chemical bonds into different local
chemical environment leads to strengthening. Generally, this effect
is denoted as chemical strengthening. It is commonly distinguished
between anti-phase boundary, stacking fault and interfacial effects.

If particles in a matrix show chemical ordering, the anti-phase
boundary effect often represents the major strengthening mecha-
nism. When a dislocation passes through an ordered precipitate,
it destroys the periodic atomic arrangement in its slip plane. The
disordered plane, which is left behind, is called anti-phase bound-
ary (APB).

In ordered crystal structures, the shearing dislocations travel in
groups, where the number of dislocations in a group depends on
the type of order structure (e.g. face-centered cubic L1,, tetragonal
DO0,,). This observation is important for the interpretation of the
ability of precipitates to restore to the perfect order structure after
the precipitate-dislocation interaction. The first dislocation, which
is denoted as leading dislocation, creates an anti-phase boundary
in the precipitate. The second one, which is called trailing disloca-
tion, compensates the effect of the first one and restores the
ordered structure again. Depending on the size of the precipitate,
we again distinguish two regimes.

2.3.3.1. Weak and shearable precipitates. This regime is operative if
the precipitates are small, i.e. the outer cut-off angle is ¥.> 120°.
The disordered precipitates stimulate the trailing dislocations
towards the leading dislocation. This compensates, partly, the
APB strengthening effect of the leading dislocation (see Fig. 4(A)).
The strengthening equation for the APB effect can be expressed
by using Eq. (7) with F;;, = 2yapg Ts as

(a) (b)

©le
O\ e Il >—l
n{®
O o I
T,

s
I: leading dislocation

II: Trailing dislocation

Fig. 4. Schematic illustration of ordered coherent precipitates affected by a pair of
dislocations. Precipitate regions, which are affected by dislocation and suffer the
APB effect, are shown in black. (A) Coherent and weak precipitates and (B) coherent
and strong precipitates.
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_ 2 ) 2T [2y ppgTs %_ Ts
TAPB,weak - s {bLs |: 2T ﬁC Ls . (29)

where yapg is the anti-phase boundary energy of the precipitate and
B is a constant between 0.0 and 1.0. g is close to 1.0 when the trail-
ing dislocation is straight. s is the number of pair dislocations in the
group and the function {(rs/Ls) corresponds to the pulling tension of
precipitates on the trailing dislocation. It is given as [25]

s\ _ 16 VapaTs
(2) - 30

2.3.3.2. Strong and shearable precipitates. When the precipitates are
large, application of Eq. (29) becomes critical because the precipi-
tates produce a high APB force (see Fig. 4(B)). In this situation,
when the leading dislocation travels through the precipitate, the
resistance force of the precipitate, F;, increases with the distance
x in the direction of dislocation movement (see Fig. 5). Conse-
quently, the dislocation tries to increase its line tension force by
decreasing the outer cut-off angle. For small precipitates, this
mechanism could be energetically favorable for the dislocation,
and it can pass through the precipitate. But for larger precipitates,
the line tension force of the dislocation cannot compensate the
high APB force of the precipitate and the dislocation becomes stuck
inside the precipitate in position x; = x,,, and F; arrives to the max-
imum Fy, = Fy = —yapg d(x1).

Analogous to the weak and shearable treatment of structural re-
ordering, the trailing dislocation is attracted by the precipitate.
This has two effects on the leading dislocation. Firstly, it recon-
structs the ordered structure of the precipitate, which produces a
force with opposite sign of F; on the leading dislocation, which is
F, = +yapp d(x3). This stimulates the leading dislocation to go for-
ward. Secondly, it generates a repulsive force due to the elastic
interaction between dislocations. Gleiter and Hornbogen [26] have
described the elastic interaction force between two strongly paired
dislocations as
Gb* d(xpm)

Rapg =V ——
APB M Xy

1)

where Rapp is the elastic interaction force between two strongly
paired dislocations. V is a parameter introduced for remaining dis-
location segments incorporating also some other uncertainties. Its
value is assumed to be 2.8 in Ref. [27]. F; and Rapg drive the leading
dislocation to move and shear the precipitate. In this regime, the
maximum shear stress occurs when F,;, = F; and F, = 0.

Finally, Hiither and Reppich [28] obtained a general expression
for strong and shearable ordered particles as

Fig. 5. Interaction between leading and trailing dislocations with a precipitate
where the area between dislocations is a disordered region (APB).

2VT (TC) pppT 3
’L'APB.strong = <7'CbL ) (% - 1>2- (32)
s

2.3.4. Stacking fault effect

In some crystalline materials, the dislocation energy of a single
dislocation can be reduced by dissociation into two partial disloca-
tions. This process leads to a stacking fault (SF) in the slip plane
between the partial dislocations 1 (P.1) and 2 (P.2). When the
stacking fault energy (SFE) of the precipitate is lower than that of
the matrix, the width of the ribbon band between two partials
inside and outside of the precipitate differs. This difference pro-
duces a retarding force in front of the dislocation movement, which
depends on the precipitate size and the width of the stacking fault
in the matrix W;, and inside the precipitate W, In Fig. 6, W,, and
W, are displayed for the cases where the dislocation is free from
external tension (left side) and where the dislocation is under
external tension (right side). In Fig. 6a, the precipitate is located
between P.1 and P.2 in tension-free condition, where Wy, and W,
are wider than the equivalent precipitate diameter (2rs). In

(@) 2r<Wpand W,

P2

Wi

Tension free Under tension

(b) W+ W,>2r>w,,

Tension free Under tension

(€) 2r> W, and W,

Under tension

Tension free

Fig. 6. Distance between two partial dislocation inside and outside a precipitate for
the cases where the dislocation is free or under external tension. (a) Equivalent
precipitate diameter (2r;) is smaller than the width of the stacking fault in matrix
Wy, and in precipitate W), (b) W, + Wy, > 2rs > W, and (c) 2rg > Wy, and W,
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tension-free condition of Fig. 6b, P.1 and P.2 touch two sides of pre-
cipitate where 2r; is smaller than W, + Wy, and larger than W,

By applying external tension on dislocations, in both cases
defined in Fig. 6a and b, the precipitate resistance force increases
due to the P.2 displacement and reaches its maximum at the pre-
cipitate center (right side of Fig. 6a and b). The maximum resis-
tance force for these two conditions is,

Fin = 215(Ysem — Ysrp)- (33)

where (yspm — ysep) IS the difference between the stacking fault
energies of the matrix and the precipitate. Replacing Egs. (7) and
(8) by Eq. (33) delivers the stacking fault strengthening for weak
and strong precipitates with

3
2T rs() . 2
TSF.weak = E {M} 3 (34)
and,
2r5(7 -
T (35)
S

Fig. 6¢ depicts the interaction between precipitate and partial dislo-
cations, when 2ry is larger than W, and Wy,. The length of partial
dislocation 2 inside the precipitate (dsg) defines the maximum pre-
cipitate resistance force when P.1 is still located along the circum-
ference of the precipitate. Hirsch and Kelley [29] derived the
maximum force as

1

W2\ ?
Fn = 2()sem = Vsp) (Weffrs - Teﬁ) ) (36)
2K(0)
W=\ 37
7 (Vsem + Vsep) G7)

K(0)

_ Gby(2-v) ( _ 2vcos (28))7 (38)

T 87m(1-v) (2-v)

W, is the distance between P.1 and P.2, when P.1 is located at the
precipitate circumference, K(©) is the elastic energy per unit length
between two partial dislocations and b, is the magnitude of the Bur-
gers vector in the precipitate. If we replace F,;, in Eq. (7) by Eq. (36),
we finally obtain the yield stress increment for the weak mecha-
nism as

143
2T | (Vsem — Vsep) <Weffrs - szzjf/4>2
TSF.weak = E T . (39)

Replacing Eq. (8) by Eq. (36), the expression for the strong regime is
found as

[N

2(Ysem — Vsrp) (Wefrs - ngf/‘l)
TSF strong :.] bL . (40)

2.3.5. Interfacial effect

When a dislocation cuts a coherent precipitate, two new ledges
forms. One is created after entering the precipitate, the other one
after leaving it. These ledges cause an increment in the interfacial
area in these regions. The maximum force related to this mecha-
nism is expressed by F,, =2 e b [9], where ) is the energy of
the precipitate-matrix interface created by dislocation slip. Replac-
ing F,, in Eq. (7) delivers

3

2T [yeb]?

TChemweak = E |:/I%:| . (41)
s

for the weak and shearable mechanism and if the operative
strengthening regime is strong and shearable, we replace F,, in
Eq. (8) and arrive at

29eb
‘L-Chem.strong = ] l/)lll‘:E . (42)
s

2.4. Non-shearing mechanism

Ashby [7] suggested a widely used expression for the ultimate
shear stress related to non-shearable precipitates. He introduced
simplifying assumptions for the outer cut-off distance of the pre-
cipitate into the original Orowan equation and, furthermore, made
assumptions on the dislocation character. Ashby considered the
exact shape of the dislocation when a dislocation approaches a
Frank-Read configuration between two precipitates. In this situa-
tion, which is shown in Fig. 1, the dislocation escapes the precipi-
tate as soon as the outer cut-off angle reaches an angle of ¥ = 0.
Then,

Torowan :]%Lzs_g) . (43)

Fig. 7 illustrates the interaction between an edge dislocation (0 = 7/
2) with an array of strong precipitates in the dislocation slip plane.
In step 1, the external tension is assumed to be zero and the dislo-
cation is located straight behind a line of precipitates. By increasing
the external tension in step 2, the dislocation bends between the
precipitates to circular or elliptical shape. In this process, the dislo-
cation character changes from edge to screw in point n because the
dislocation line becomes parallel to the Burgers vector in this point.
In Eq. (43), E(m/2 — 0) is used instead of E(0) because the original
dislocation has opposite character at point n compared to point
m. Analogously, if the original dislocation has screw character at
point m (6 = 0), the dislocation character at the adjacent precipitate
is edge (0 =m/2). In step 3, the dislocation escapes the first array of
precipitates when the external tension is further increased and the
initial dislocation character is restored. This condition represents
the physical basis of the final shear stress expression in the Ashby
model. Brown and Ham [8] approximated the condition of ran-
domly distributed obstacles and reformulated Eq. (43) as,

0.5
Torowan :]W . (44>

Insertion of Eq. (1) with 0=0 and 0= x/2 in Eq. (44) restores the
well-known Orowan equation, which is,

External tension
o O @)
b= Edge Dis.
- <
=
(=) n
& O ©
]
= Screw Dis.
O @)
b Vector b Vector
Step 1 Step 2 Step 3

Fig. 7. Interaction between an edge dislocation with an array of non-shearable
precipitates.
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3. Discussion

The present set of strengthening equations shows that the max-
imum shear stress before yielding depends on the dislocation line
tension T, the mean distance between two particles, the precipitate
resistance force F, which is a function of precipitate radius or outer
cut-off distance, and the particular strengthening mechanism. In
contrast, conventional strengthening equations are often functions
of the mean radius, phase fraction as well as physical and some
coefficients [6-9,18,20,24-26,30]. When substituting the actual
precipitate distribution by only the mean radius and phase fraction
of precipitates, the calculated yield strength increments can
become substantially different from experimental results. The dif-
ferences usually arise from simplifications in the development of
the strengthening equations. The most prominent are listed in
Fig. 8.

For a predictive simulation of the total shear stress, we propose
to refine the values of input variables instead of changing and
adapting phenomenological coefficients in order to close the gap
between experimental and simulation results. In a survey for eval-
uation of final yield strength in binary Ni-Al system, Ardell and
Huang [32] have listed eight different values between 0.129]/
m~2 and 0.188 J/m~2 for the anti-phase boundary energy (yapg) of
y’ from different references, while Douin et al. [33] measured
yaps = 0.111 J/m~2 by using weak-beam electron microscopy.

In the present model, we have connected strengthening equa-
tions to the incipient physical parameters, which are varying dur-
ing aging and we have avoided unnecessary simplifications
commonly used in conventional models. This is discussed in detail
subsequently.

3.1. Non-spherical precipitates

In some precipitation strengthening systems, for instance,
Al-Mg-Si, Al-Cu, Al-Cu-Mg, Al-Zn-Mg and some nickel-base

superalloys (Inconel 718, Rene 62, Udimet 630), precipitates are
non-spherical. For these cases, the conventional strengthening
equations are not applicable and it is difficult to advance these
equations while being based on phenomenological parameters.
Three different approaches are reported in literatures to simulate
the yield strength for non-spherical precipitates:

(i) Myhr et al. [34] assumed that prolate precipitates are spher-
ical in AlI-Mg-Si system and applied conventional strength-
ening equations, thus simply ignoring the shape effect.

(ii) Nie and Muddle [35] modified the Orowan equation, Egs.
(44) and (45), for cylindrical disc shape precipitate in Al-
Cu-Sn system by using a stereological method. They
assumed that the aspect ratio is higher that 40 (diameter/
thickness) and simulated the yield strength increment based
on this assumption. In their model, they assumed that the
precipitates are not shearable at all and ignored all shearing
mechanisms. This model can be developed for rod shape
precipitates in aluminum and magnesium alloys, too [36,37].

(iii) Computer simulations of moving dislocations in their slip
plane were used in the method of Zhu and Starke [38],
where the moving dislocations are crossing rod-shape parti-
cles elongated in (100) direction or circular platelet parti-
cles extended in the {100} planes [39-41]. Similar to Nie
and Muddle [35], this method does not account for the case
of coherent and shearable precipitates.

In our approach, as outlined in Section 2, the strengthening
equations are functions of physical parameters only, which can
straightforwardly be advanced for prolate and oblate precipitates
considering all shearing and non-shearing strengthening mecha-
nisms [11,31]. This task is performed in another work by the pres-
ent authors.

3.2. Dislocation line tension

The dislocation line tension varies in the course of particle aging
processes due to changes in the mean free distance between two
particles along the dislocation line and the angle between the

Input parameters in strengthening equations

| variables: L, (6), E(0), E,(0), N,, 1, Uy, U,

| Physical constants: a (a,), b (by), G (G), S, Yaps Yires Ysp U (Up) |

| Coefficients: J, V, B, wy, w,

A

Conventional strengtheing models
Ref. [6-9, 18, 20, 24-26, 30]

Ideal model

!

l

Simplifications:

1- Precipitates are spherical

2- T(0) is constant

3- Precipitates are in squre array
4- Precipitates have equal size

5- L is replaced by phase fraction f

1- Strengthening equations can be developed for non-
spherical precipitates [10, 11, 31]

2- T(6) and E(6) change during aging

3- Precipitates are randomy distributed in matrix [10]

4- Precipitates have different size [10]

5- There is not phenomenological parameters like f

In an ideal model:

|

v
Strengthening equations:

t=f (1, f, constants)

Strengthening equations:

t=f (r, L, T, constants)
T=1f(6,L)
L=f(N;, 1)

Fig. 8. Evolution of yield strength equations in conventional and ideal model.
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dislocation line with the Burgers vector 0 due to the dislocation
bending behind a particle [42].

In the early stages of aging, precipitates are weak and the dislo-
cation character remains unaffected when the dislocation is nearly
straight. Once the precipitates grow, the dislocation character
changes during bending behind the strong precipitates. Dieter
[42] measured the dislocation energy per unit length based on
Eq. (1) in annealed crystals. He assumed that r,=10"7 m and
r;=2-10"1°m; then In(r,/r;) ~ 2. After replacing the parameters
for outer and inner cut-off distance and using v = 1/3, the resulting
dislocation energies for screw and edge dislocations become
E(0)=(1/2)Gb? and E(m[2)=(3/4)Gb? respectively. In the same
way, using Eq. (3), the dislocation line tension for screw and edge
dislocations are T(0) = Gb? and T(n/2)=(1/4)Gb? respectively. In
contrast, Ardell [9] proposed In(r,/r;) ~ 4 at peak strength. These
different assumptions in conventional models produce rather large
differences in the absolute value of the strengthening effect, thus
indicating that the dislocation line tension is a critical parameter
for precipitation strengthening. For simulation of the yield
strength, the dislocation line tension is proposed to be T=(1/
2)Gb? in Refs. [8,9,18,20,23,28,29,41].

In practical simulation, accurate result can only be obtained
after performing a thorough characterization of the dislocation
character, which is a mixture of edge or screw, and by accurately
determining the free distance between two particles. Both these
parameters are dynamic in nature and vary during aging.

3.3. Free distance between two precipitates

The free distance between two particles is a crucial input quan-
tity in precipitation strengthening theory. In his early model,
Ashby [7] assumed that all precipitates have the same size and that
they are distributed on a square array without preferential point
for nucleation. Based on these assumptions, the free distance
between two precipitates, Ls., is represented in the following
manner [7],

1
Lie = |20, (46)
where L is the surface to surface distance between two particles
located in the square arrangement and N; is the number of particles,
which intersect unit area of slip plane. The relation between N; and
the number of particles per unit volume of the matrix, Ny, is

Ny =2r1N,. (47)

Whereas the square array is a reasonable approximation of the real
situation for many alloy systems, in other precipitation hardening
materials, such as aluminum alloys AA2xxx and AA6xxx or y”-hard-
ened superalloys, precipitates nucleate in a close-packed triangular
array [43]. In this case, Ls . should be modified to the following form,
where the surface to surface distance between two particles located
in triangular arrangement, Ly, is

Cy2/v3 “8)

Ly = | e —215]|.
s,t \/m s

In general, strengthening models based on Eqs. (46) and (48) (see
the work of Russel and Brown [20], Kelly [44] and Fullman [45])
are physically correct. However, their accuracy decreases for small
particles with r < 0.04 r, where 7 is the mean radius of precipitates.
Moreover, when being applicable for r < 0.04, the results are not sat-
isfying at 7. The phase fraction of precipitates has a similar effect on
the free distance of two particles. In a numerical analysis, Sondereg-
ger et al. [10] simulated the shearing of particles in the dislocation
slip plane for 10°> randomly distributed precipitates in 100 size

classes in volume. They calculated the free distance distribution
between two particles by varying radius at constant phase fraction
and vice versa. Their simulation result showed that the deviation
from numerical simulation could be 70% and more for the classical
models.

These authors presented an alternative model for arbitrary pre-
cipitate size and randomly distributed particles in a matrix. In this
model, precipitates are divided into discrete size classes. Each class
contains precipitates from within a specific radius interval, r., and a
number density of particles, n, .. A general formulation for the free
distance between two particles in the slip plane is derived as

In3 2
Ly = \/m + (2rg)” — 21y, (49)
And
2 chv-fr?
s =\ =—F. 50
S D S (30)

where r is the mean projected radius. The Sonderegger et al. model
delivers more accurate results for various size distributions and dif-
ferent phase fractions. The difference in free distance between two
particles obtained from Eq. (49) and a numerical analysis of 10° ran-
domly distributed precipitates in 100 size classes described in Ref.
[10] is in all cases less than 30%.

Dislocation
in slip plane

3

X

(B) ;
Planar Diameter

Precipitate

Slip plane
Projection of
: precipitate
h=2r
—
rs,a
©)
2r
h=2r
Precipitate Tep

Fig. 9. (A) The interfering region between a precipitate and the dislocation slip
plane, (B) planar radius in model of Ardell [9] and (C) radius of circular section in
slip plane in model of Brown and Ham [8].
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3.4. Equivalent radius

The spatial extension of the interfering part between a disloca-
tion and a precipitate, the so-called equivalent radius, varies
between 0 and the radius of the precipitate (Fig. 9A). There are
two approaches to measure the equivalent radius, one by Ardell
[9] and the second by Brown and Ham [8]. Ardell considered the
projection of the precipitate onto a plane perpendicular to the slip
plane of the dislocations. The resulting geometric figure is a circle
with radius r and area 7r? (Fig. 9B). Ardell then replaced this circle
by a rectangle with the same area and same height in z direction.
The average planar radius in this model is then

_
Tsa :Zr. (51)

In the Brown and Ham approach, illustrated in Fig. 9C, the volume
effect is taken into account. Brown and Ham replaced the spherical
precipitate by a cylindrical precipitate with the same volume (4/3
7r’) and same height in z direction. The mean radius of the circular
section in the dislocation slip plane in this model is [8,30]

Tsp = \/% T. (52)

The difference between the equivalent radii of precipitates r;, and
I5p in these two models is about 3.9%.

3.5. Strengthening mechanisms

During aging of a supersaturated alloy, nuclei of small particles
initially grow until they finally coarsen by the mechanisms of Ost-
wald ripening and/or particle coalescence. As particle radii, phase
fractions, precipitate free distances and number densities change
in the course of precipitate evolution, so do their contributions to
different strengthening mechanisms.

3.5.1. Phase fraction, free distance between precipitates and
dislocation line tension

Fig. 10 illustrates changes in phase fraction (f), free distance
between two precipitates along dislocation line (Ls, Leg) and line
tension (T) of an edge dislocation for cases where the number den-
sity of precipitates is held constant and the precipitate radius
increases with aging time. The utilized values in this evaluation
are summarized in Table 1.

Fig. 10a shows the phase fraction of precipitates in this system,
which increases with aging time. In Ref. [9], Ardell defines a critical
value for the validity of the shearing equations when the phase
fraction of precipitate is lower than 40%. In this example, the phase
fraction reaches 40% when the precipitate radius is approximately
70 nm.

The solid line in Fig. 10b shows changes in the surface-to-sur-
face distance between two strong particles, L, as a function of pre-
cipitate size. Ls is equal to L. (center-to-center distance between
two precipitates) when the equivalent radius is almost zero. In this
example, L; decreases linearly from 0.3 pm to 0.1 um by increasing
precipitate size from 0 to 100 nm during precipitate coarsening. L
is independent of the type of strengthening mechanism, whereas
Le depends on the maximum resistance force F,, and dislocation
line tension in different strengthening mechanisms. The dash line
in Fig. 10b shows virtual values for L.y based on Eq. (6) in the
coherency mechanism. In the same way, virtual values for Ley can
be calculated for other strengthening mechanisms. We can calcu-
late a real Log value if we define the total force of different mecha-
nism as explained in Section 2.3.

Replacing r, in Eq. (3) by L delivers the dislocation line tension,
T, which is illustrated by the solid line in Fig. 10c. The dash line in
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Fig. 10. Simulation of (a) phase fraction of precipitate, (b) surface-to-surface
distance between two particles in weak and shearable mechanism L.y and in strong
mechanism L and (c) dislocation line tension force in weak and strong mechanisms.

Fig. 10c represents the virtual line tension of dislocations when the
operative mechanism is coherency strengthening.
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Table 1

Physical and chemical parameters of the virtual matrix and
precipitate, which are used for the strengthening simula-
tions in Figs. 10 and 11.

Parameters Values
b=b, (nm) 0.25
J 1

G (GPa) 79.3
Gp (GPa) 70.0
L. (nm) 300
r; (nm) 2b

S 2

g 0.001
yaps J M) 0.04
yire J m~2) 0.5
ysim (J m2) 0.1
sep (J m™2) 0.05
v 1/3

In all weak strengthening equations, except for the chemical
effect, the precipitate resistance force increases with precipitate
size. This causes a decrease in Leyand T. In Eq. (6), Legy is a function
of T/Fp, and, in Eq. (3), T is a function of Leg. Egs. (3) and (6), there-
fore, express the observation that L.y and T are interdependent
functions that change gradually with precipitate size.

Based on the present parameterization, we next analyze the role
of changing precipitate radii for the simulated shear stress in dif-
ferent strengthening mechanisms.

3.5.2. Coherency effect

In the analysis of the coherency effect, which represents the
interaction of the moving dislocation with the stress field gener-
ated by the lattice misfit between precipitate and matrix, we
observe an increase of precipitation strengthening with increasing
radius. In the model of Gerold and Haberkorn [18], the yield
strength increment is caused by the strain field in z direction,
which is the distance between the slip plane and the precipitate
center. The strain fields along the dislocation line direction y and
the direction of dislocation movement x does not influence the
maximum resistance force in Eq. (7) (see Fig. 9A).

The weak and shearing regime of coherency strengthening is
valid when the outer cut-off angle is 120° < ¥, < 180°. With
increasing precipitate radius, the maximum resistance force of
the precipitate on the dislocation increases and the outer cut-off
angle decreases. Then, the strengthening mechanism shifts from
the weak and shearing regime (Eqs. (16) and (17)) to the strong
and shearing regime (Eqgs. (18) and (19)). In the weak and shearing
regime, the strengthening effect strongly depends on the precipi-
tate radius. When the strong and shearing mechanism is operative,
an increase of the particle radius has a weaker effect. The critical
particle size for transition, 7, from Eq. (16) to Eq. (18) for an edge
dislocation is [8],

o _]O.S 3504303 /1 _ 9y L\ b
Te crit,weak = E W 1-v In Tm Ey (53)
and for a screw dislocation,

S %20% (14w (L \ b

T's crit weak = an 90_4 1_v In ) e . (54)

Interestingly, the critical radius for transition from the weak to the
strong mechanism of a screw dislocation is approximately 10 times
higher than that of an edge dislocation when v = 1/3. This is obvious
from comparison of Egs. (53) and (54).

The regime defined by the strong and shearable mechanism is
an intermediate mechanism between the weak and shearing
mechanism and the Orowan mechanism. In some alloy systems,

where the lattice misfit of precipitate and matrix is high, this
regime becomes a virtual mechanism because the strengthening
value obtained from Eqgs. (18) and (19) is above the value given
by the Orowan Eq. (43).

When the precipitate size increases during aging, the precipi-
tates either lose coherency and become incoherent or they become
so strong that they cannot be sheared any longer. The point, where
the strengthening mechanism is converted from shearing to Oro-
wan is reached when the outer cut-off angle ¥, reaches almost
to zero and F,,, = 2T. The transition criterion from shearing mecha-
nism to Orowan mechanism for an edge dislocation is given by [8],

_ 1 /1-2v L\ b

Tecritstrong = g <ﬁ> In (E) . (55)
and for a screw dislocation,

_ 1 /1+v L\ b

Ts crit strong = E <.l — D) In (Fj> E . (56)

Eqgs. (55) and (56) define a criterion for the transition radius from
shearing to non-shearing, which is applicable for shear and strong
equations in all the strengthening mechanisms. For the coherency
mechanism, the maximum resistance force in front of the disloca-
tion occurs outside the precipitate and the other strengthening
effects such as APB, chemical and stacking fault effects, will be acti-
vated during the interaction between dislocation and precipitate.
For the precipitates, which are larger than the critical radius men-
tioned in Eqgs. (55) and (56), the strengthening mechanism is Oro-
wan, although other strengthening mechanisms indicate that
shearing mechanisms should be operative.

In Fig. 11(a-e), the weak and shearing regime and the strong
and shearing regime in all strengthening mechanisms are dis-
played for interaction between precipitate and edge dislocation.
The values utilized in the evaluation of different strengthening
mechanisms are mentioned in Table 1.

3.5.3. Modulus effect

In the Siems et al. model [21], the shear stress generated by the
modulus effect increases strongly up to a precipitate radius of 10-r;.
For larger radii, however, the modulus effect becomes almost inde-
pendent of radius [24] (see Fig. 11b). In this model, which is valid
for precipitates with lower shear modulus than the matrix, the
strengthening weak Eq. (22) does not intersect the strong Eq.
(23) and there is no transition radius from weak to strong mecha-
nisms and Orowan mechanism. This result is in conflict with other
strengthening mechanisms and models, which show a gradual
change from weak to strong regimes.

In the Nembach model [24], the total shear stress increases
monotonously. As shown in Fig. 11b, the weak mechanism is
replaced by the strong mechanism as soon as the precipitate radius
is approximately 40 nm. In many precipitation strengthening sys-
tems, the modulus effect is a weak strengthening mechanism com-
pared to the coherency and APB effects [24]. But, in the Fe-Cu
system, for instance, it is assumed to be the dominant mechanism
[46].

For the calculation of the overall yield strength, we considered
Eq. (27) for the weak and shearable effect and Eq. (28) for the
strong and shearable effect.

3.5.4. Anti-phase boundary effect

An APB is a planar defect occurring in chemically ordered pre-
cipitates. Fig. 11c shows the effect of APB strengthening for an edge
dislocation based on Eqs. (29)-(32). At the early aging stage, the
weak and shearing equation is controlling the strengthening
regime. The weak and shearing regime is smoothly replaced by
the strong and shearing during aging. In contrast to the coherency
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Fig. 11. Analysis of different weak and strong strengthening regimes for edge dislocations based on physical and chemical parameters defined in Table 1. The plots define (a)
coherency effect, (b) modulus effect, (c) APB effect, (d) stacking fault effect and (e) interfacial effect. Plot (f) shows the combination of all the weak and strong strengthening
mechanisms in plots (a—e) with the Orowan mechanism.

effect, where the maximum force between dislocation and precip-
itate depends on the position of the slip plane relative to the

precipitate center. Here, the maximum force depends on the
interplay between the energy of the swept area (see Fig. 5) and
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Fig. 12. Combination of different strengthening weak mechanisms (WM) and strong mechanisms (SM) in a single or multi-particle system.

the distance between the leading and trailing dislocations. In
ordered precipitates, the APB effect is often as strong as the coher-
ency effect.

3.5.5. Stacking fault effect

When the stacking fault energy of precipitate and matrix are
low, Egs. (34) and (35) are the operative strengthening equations
because the ribbon band between the two partial dislocations
(P.1 and P.2) is wider than the precipitate diameter. During aging,
the precipitate size increases and becomes larger than the ribbon
band. Then, Egs. (39) and (40) deliver more accurate results, partic-
ularly at the peak of the yield strength. Fig. 11d displays the shear
stress increment due to the stacking fault effect as proposed in Eqs.
(39) and (40). Similar to the other strengthening mechanisms, the
weak regime is replaced by the strong regime above a specific pre-
cipitate size. This mechanism has often a minor effect on the final
yield strength compared to the other mechanisms.

3.5.6. Interfacial effect

The interfacial effect has generally the weakest effect in precip-
itation hardening of shearable precipitates. Fig. 11e illustrates the
magnitude of chemical strengthening in weak and strong regimes
based on Egs. (41) and (42). Unlike other strengthening mecha-
nisms, chemical strengthening is the independent of precipitate
size and increases by L.y and L; decrement, only.

3.6. Superposition of strengthening mechanisms

In precipitation-strengthened multi-component and/or multi-
phase materials, the different nature and size of particles will lead
to a situation where the total strengthening effect is given by a
mixture of different strengthening mechanisms. Even with just
one kind of precipitate, a distribution of particle sizes in different
slip planes of dislocations must be expected, thus also representing
a situation where each precipitate has different strengthening
potential and the total strength contribution must in some way
be superposed.

For a prediction of the combined effect of all individual
strengthening contributions, several investigations have been per-
formed and various approaches exist [8,9,47-49]. The basic result
of these studies can be lumped up in the superposition expression

n
T?otal = ZAT?7 (57)
i=1

where q is an exponent, which commonly lies between 1 and 2. Eq.
(57) delivers the shear stress of a precipitation-strengthened mate-
rial with a mixture of operative strengthening mechanisms.
Numerical studies of Forman and Makin [50] for two types of
obstacles with the same strength provide good agreement to the
overall strength with a value of g = 2 (Pythagorean superposition).
The same result is also proposed by Koppenaal [49]. In another
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investigation, Ardell [9] applied computer simulations to deter-
mine the value of g for a mixture of two randomly distributed pre-
cipitate populations with distinct strength. He proposed that, for a
combination of just weak mechanisms (WM) or just strong mech-
anisms (SM), g should be chosen close to 1.8. Otherwise, when two
different mechanisms of weak and strong type are acting together,
q should be given a value close to 1.4. Merging of weak and strong
mechanisms in a multi-particle system (1,2,...) is demonstrated in
Fig. 12 for the simple case of two particles.

In this figure, the q value for weak and shearable mechanism
and strong and shearable mechanism is approximately 1.8. The
operative strengthening mechanism for a specific precipitate is
the one with lower strength among weak mechanism (WM), strong
mechanism (SM) and Orowan mechanism. When there are differ-
ent particles in the matrix, we can use the mixture law of Ardell
[9]. As shown in the flowchart, ¢ is 1.8 when the operative
strengthening mechanism in different particles is WM. In the same
way ¢ is 1.8 when the operative strengthening mechanism in dif-
ferent particles is SM or Orowan mechanism. For the combination
of WM with SM or Orowan mechanism ¢ is 1.4. In the present
study this procedure is utilized for superposition of all shearable
and non-shearable effects including coherency, modulus, APB,
stacking fault and interfacial effects. Fig. 11f displays the total yield
strength in a material containing virtual precipitates defined in
Table 1. This plot, which combines the contribution of different
strengthening mechanisms as demonstrated in plots Fig. 11(a-e),
describes weak mechanism as an operative mechanism for precip-
itate smaller than r;=30nm. For coarser precipitate up to ry=
75 nm, the operative mechanism is strong and shearable. The
Orowan mechanism controls the final yield strength when the
precipitate is larger than 75 nm.

4. Summary

In this paper, we review and discuss classical strengthening
models for both, shearing and non-shearing, mechanisms. Where
possible, these approaches are modified on basis of recent progress
in modeling of essential input parameters for precipitation
strengthening with the goal of making the strength predictions
more quantitative and accurate.

The proposed equations are established on basis of physical
input parameters. These are, among others, dislocation character,
precipitate radius, outer cut-off distance and mean free distance
between precipitates. Phenomenological parameters are widely
avoided, thus increasing accuracy and predictability of the equa-
tions. The various strengthening equations are consistent among
each other, since they are developed on basis of the same set of
fundamental governing equations.

A procedure is proposed to identify the operative strengthening
mechanism(s) for each individual precipitate from the analysis of
strength contributions of the different individual shearing and
non-shearing mechanisms. Finally, we suggest how to combine dif-
ferent strengthening mechanisms in complex systems to obtain
the final yield strength of multi-phase, multi-particle materials.
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1. Introduction

In precipitation hardening, the yield strength of materials
increases because dispersed precipitates impede dislocation
movement. A mathematical formulation has been introduced by
Orowan in 1944 [1], and discussed by Ashby [2] and Brown and
Ham [3] in more depth. The following expression holds,

. Gb 1, (Reg
oo = gt () .

where G is the shear modulus, v is Poisson's ratio, r; is the inner
cut-off radius, Req is the outer cut-off radius, which is the average
planar particle diameter for non-shearable particles, and A is the
surface to surface distance between two particles. Orowan, Ashby,
and Brown and Ham assume an equal number of edge and screw
dislocations in their work.

Eq. (1) is applicable for hard, spherical and non-coherent
particles without lattice continuity between precipitates and
matrix. In this case, dislocations by-pass the precipitates and
produce a dislocation loop around them.
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In the case of non-spherical and non-shearable precipitates,
Zhu and Starke [4] proposed strengthening equations for rod-
shaped precipitates oriented in (100) direction and circular plate-
lets extended in {100} planes. This model is based on computer
simulations of moving dislocations in the precipitate crossing slip
plane. Later, this method was widely used for simulation of
precipitation strengthening of non-spherical precipitates in alu-
minum alloys [5-7]. Nie and Muddle [8] modified Eq. (1) by
applying stereological method for triangular precipitate arrange-
ment. In that model, precipitates are treated as cylindrical discs in
the slip plane of fcc when the precipitate aspect ratio (thickness/
diameter) is lower than 1/40. The stereological method is also
applied for different precipitate orientations in fcc aluminum
alloys [9] and for rod-shaped precipitates in hcp magnesium [10].

When dislocations interact with a coherent and shearable
precipitate, they can pass through it, because atomic lattice
continuity remains intact at the precipitate-matrix interface.
During different shearing stages, a number of effects due to the
dislocation-particle interaction can occur, which are (i) coherency
strengthening due to lattice misfit, (ii) modulus strengthening (iii)
anti-phase boundary strengthening, (iv) stacking fault strengthen-
ing and (v) interfacial strengthening. These effects lead to a
resistance force F in front of the dislocation movement, which
leads to dislocation bending. When the bending angle between
two sides of the dislocation line behind a precipitate is between
180° and 120°, this precipitate is denoted as “weak”. Brown and
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Ham [3] and Ardell [11] analyzed the shear stress increment of
weak precipitates for point obstacles as defined by Friedel [12],
which are randomly distributed in the matrix. The strengthening
equation for weak and shearable precipitates reads [11]

2T [F(reg)|?
Tshear = blss |: 2T :| (2)
F(req) = krgg, 3)

where T is the dislocation line tension, F(req) is the resistance force
in different shearing mechanisms in front of dislocation move-
ment, req is the equivalent radius of the particle in the slip plane
and m is a constant in the range of 0-1. m is equal to one for anti-
phase boundary and stacking fault effects [11]. It is equal to zero
for the interfacial effect, which shows that this mechanism is
independent of precipitate radius. For modulus strengthening, an
intermediate m value is proposed between 0.72 and 0.90 [13], k is
a constant depending on physical and chemical properties of
the precipitate. This parameter is ki, =2 y;,.b for the interfacial
effect, where y,, is the interfacial energy of the precipitate,
kst =217 sm — 7| fOr the stacking fault effect, where y, and y,
are the stacking fault energy of matrix and precipitates, respec-
tively, kmo = 0.05|G—Gp|b2"" for the modulus effect, where G, is
the shear modulus of the precipitate and k,p, = 27, for the anti-
phase boundary effect, where y,,, is the anti-phase boundary
energy of the precipitate [11]. In spherical homogeneous precipi-
tates, the physical and chemical properties are identical in all main
crystallographic directions. This means that the interaction
between precipitate and dislocation is independent of slipping
direction and dislocation edge or screw character. In inhomoge-
neous precipitates, different length of lattice parameters promotes
preferential growth in different directions, which leads to the
formation of non-spherical precipitates. Even though, in this case,
k depends on the orientation of the precipitate with respect to the
slipping direction of edge or screw dislocations. In the present
work, we consider k as a constant for each strengthening mechan-
ism. This model excludes coherency strengthening, because in this
effect, the maximum resistance force in front of the dislocation
movement occurs outside the precipitate and it is independent of
the length of the dislocation inside the precipitate. The yield
strength increment due to the coherency effect depends on the
position of the slip plane with respect to the precipitate center and
we will discuss on this effect in a separate paper.

In the point obstacle model of Friedel [12], Ass is equal to the
center to center distance between two particles A.. For the
realistic case of a precipitate with finite size, the final shear stress
evaluated by Eq. (2) is higher than that for a point obstacle
precipitate. This means that Eq. (2) requires a correction for
precipitates with finite size. Ardell [11] modified Eq. (2) by
subtracting the maximum length of a dislocation inside the
precipitate from the center to center distance between two
particles, which is Ass=Acc—21s.

Egs. (1)-(3) show that the final shear stress is a function of the
free distance A5 between two precipitates and req or Req, if one
assumes that the resistance force of the precipitate does not
influence the dislocation character during interaction, ie., T
remains constant. In this study, we apply Eqgs. (1)-(3) for non-
spherical precipitates and analyze the interaction between non-
spherical precipitates with screw or edge dislocations similar to
the Ardell's assumptions [11] for spherical precipitates.

1.1. Free distance between precipitates
Sonderegger and et al. [14] proposed a model for the free

distance between precipitates with arbitrary size and random
distribution. In this model, precipitates are divided in different

classes. Each class i contains particles with specific mean radius r;
and a number density ny; A general formulation for the free
distance between two particles in the slip plane is derived as

In3
Ass = | ——=—————5—2r, 4
* 27[2:nv,irv,i"‘(zrs)2 ’ ( )
i

Is=\/aw—" (5
s 3va,irv,i )
1
Eqgs. (4) and (5) are established for spherical particles. For ellipsoid
precipitates in fcc structure, Sonderegger and Kozeschnik [15]
introduced a correction factor for A, depending on a shape factor
h, as

(2402 E
ﬂss,ell=h6< 3 > Ass, (6)

h=—, (7
where Agsep is the free distance between two ellipsoidal precipi-
tates and replaces Ass for spherical particles. ¢ is the half axes of the
particle parallel to its rotational axes and a is the according half
length perpendicular to the rotational axes. In this model, pre-
cipitates can be rotational needle-shaped ellipsoids (prolate),
which are elongated in (100) directions, or rotational lens-
shaped ellipsoids (oblate) elongated in {100} planes. In case of
ellipsoids, r denotes the radius of a sphere with identical volume.

In the same way we develop a model for the equivalent
precipitate radius of rotational needle-shaped or rotational lens-
shaped ellipsoids elongated in the mentioned in (100) directions
or in {100} planes.

2. Model development

The equivalent precipitate radius of spherical precipitates is
defined by Ardell [11] for the shearing mechanism with

p s
Tea= 72T (8)

and for Orowan mechanism as
Req =2req 9)

Egs. (8) and (9) are established for spherical particles, but in fact,
precipitates often have different shapes and orientations. Exam-
ples for fcc-structured non-spherical precipitates are " needles
oriented in (100) directions in aluminum 6xxx series, and 6" and y”
precipitates extended in {100} planes in aluminum 2xxx series and
Inconel 718, respectively. In the present modeling, gradual evolu-
tion from spherical to needle-shaped particles in fcc-structure is
described by the prolate-type precipitate in (100) directions (h > c/
a). The oblate-type represents precipitates extending in {100}
planes (h < c/a).

In ellipsoidal precipitates, the shape and growth direction of
precipitates associated with the slip plane is shown schematically
in Fig. 1. In this figure, the distance between two parallel slip
planes, which surround the precipitate, is

on= 2rh%1\/( sin @)? +h%(cos a)?, (10

where a is the angle between the rotational axes of the precipitate
(assumed to be [100] here) relative to the normal direction of slip
plane [111]; @a=54°73". With these assumptions, Eq. (10) can be
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simplified to

2 R
_+_

2n=2rh> 3t3

an

The outer cut-off radius in the Orowan mechanism and the
diameter of precipitates in the shearing mechanism are equal for
spherical precipitates because the cross section of precipitates
with the slip plane is circular. Thus, the movement of screw or
edge dislocations in different directions has the same “trace” on
the precipitates. In contrast, the cross section of ellipsoidal pre-
cipitates with the slip plane is an ellipse. As a consequence, both,
the outer cut-off radius and the precipitate radius, depend on the
length of this ellipse and its orientation relative to the movement
of the dislocation. In the following, the half axes of the cross
section ellipse are referred to as r, and r., where . is parallel to the
projection of the particle rotation axes into the slip plane. The
mean values of these parameters are found using the normal
distance n as

2n x 2r¢ = mac, (12)
T 2 3
re=73 h31/2+7hz’ (13)

[111]

a=54°73" Slip plane {111}

h= <1
a

h=51
a

Fig. 1. Prolate and oblate precipitates elongated in (100) and {100} directions,
which are confined between two parallel slip planes {111}.
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T
ra= a= r (14)

NN
=

T

h

The shape and orientation of these cross sections relative to the
dislocation movements are illustrated in Fig. 2.

Since the rotation axes of the particles are assumed to be [100],
[010] or [001], the according projections in the slip plane (r.) are

parallel to [ 121 ] [ 112 ] or [ 211 ] respectively. We
introduce the angle ¢, indicating the angle between r. and the
moving direction of the dislocations. This angle is ¢,=0, p>=27/3
and ¢s= —2x/3 for edge dislocations and @4=rx/2, ¢s=x/6 and
@s= —[6 for screw dislocations.

Interaction mechanisms between a dislocation and shearable
and non-shearable precipitates are different. Here, we distinguish

between equivalent precipitate radius for shearable precipitates
and equivalent outer cut-off radius for non-shearable precipitates.

2.1. Equivalent precipitate radius in shearing mechanism

Since dislocations are assumed to be straight for the shearing
mechanism, the dislocation length inside a precipitate during
shearing is maximal when the dislocations are located at the
center of the precipitate for spherical and ellipsoidal precipitates.
This leads to an expression for the maximum length of the
dislocation line in the particle, weq, Which is therefore referred
to as “effective equivalent radius”, with

i

Table 1 summarizes weq(@, h) values for the different angles ¢
of interest.

In the case where an edge or screw dislocation experiences
each precipitate orientation with the same probability, the average

-

3(1+(tan @)?)
+h?(1+3(tan @)?)

2

Weq(@, h) = %rh3

(15)

Screw dislocation (101)

Edge dislocation (121)
Movement. .
direction
(121)
i
—>  Movementdirection (101)
C
Edge dislocation (121)
Y1
2 Movement
3 direction
(121)
Y2
——> Movementdirection (101)

>

3

1
2r,

\

Screw dislocation (101)

Fig. 2. (a and b) Length of edge and screw dislocations in oblate precipitates for the shearing mechanism, (¢ and d) projections of precipitates on edge and screw dislocations

for the non-shearing mechanism.
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Table 1
Equivalent radius weq(@,h) of precipitates in different positions of matrix and

equivalent outer cut-off radius Req(¢, h) inside the precipitates for different angle ¢.

Disl. type Angle ¢ Weq(@, h) Req(ep. h)
Edge @, =0 8 3, i 3,
4 2407 2 24h%
+ 2 2 2
Pr3 =37 zh3 /6 zh /3 3
’ 4 Trsw | 2 w 42+h?) r
Screw Q=% i 1, =i /1,
4 n’ 2 n’
+ 2 2
Pse= "5 z_h3 2_r z h3 /1 9 r
4 1+1? 2 \Vaw T ager
2
- = Edge dis.
~~~~~~~ Screw dis.

1.5 ' Ave. Shearing

Normalized equivalent precipitate radius

0 . A A
0.01 0.1 1 10 100
Oblate Aspect ratio Prolate

Fig. 3. Normalized equivalent precipitate radius for edge and screw dislocations in
the shearing mechanism.

mean values @, are found as

_ 1]/ 3 [ 6 )
a)eq,edge(h)={3{ 2+h2+2 T h3}req, (16)

_ 1|1 2 2
Weqscrew() = {3 n +2 1+hz:| h3}reqa a7)
Eeq(h) = leeq,edge(h)‘FPzweq,screw(hL (] 8)

where P; and P, are the fraction of edge and screw dislocations in
the matrix, respectively.

Eq. (18) defines a coefficient for ellipsoidal precipitates for the
shearing mechanism. Replacing req by @eq(h) in Egs. (2) and (3)
introduces a more general equation, which is applicable for
spherical precipitates, too.

Fig. 3 shows the normalized equivalent precipitate radius as
function of the aspect ratio for a system including pure edge or
screw dislocations. Accordingly, edge and screw dislocations face
the same equivalent precipitate radius for shearing of needle-
shape particles. For plates, the situations differ. The normalized
equivalent radius generally decreases for edge dislocations with
lower aspect ratios, whereas, for screw dislocations, a minimum is
found at an aspect ratio of approximately 0.2. This means that the
dislocation character can change from screw to edge, which results
in a lower force to shear oblate precipitate.

2.2. Equivalent outer cut-off radius in non-shearing mechanism

In the non-shearing mechanism (Orowan mechanism), disloca-
tions are blocked in front of the precipitates and do not shear

25 B\ e Edge dis.

= = Screw dis.

2| Ave.Orowan

Normalized equivalent outer cut-off radius
[y
7))

1}
05 F
0 . " .
0.01 0.1 1 10 100
Oblate Aspectratio h Prolate

Fig. 4. Normalized equivalent outer cut-off radius for edge and screw dislocations
for the non-shearing mechanism.

them. Consequently, the precipitate-dislocation interaction is
independent of the intrinsic precipitate properties. The outer
cut-off radius, Req, is the full width of the particles cross-section
normal to the direction of dislocation movement and, thus, also
depending on r,, 1. and ¢, see Fig. 2.

This geometric configuration, finally, leads to an expression for
the outer cut-off radius Req as

|hy —ha|

\/1+(1/(tan @)?)

The geometry of the particles relative to the moving dislocations
for the Orowan mechanism is the same as for the shearing
mechanism, which leads to mean outer cut-off radii of

Req(@,h) = = 2\/r§(cos @ +r2(sin @) (19)

= 1 3 3 3 2

R =<z |(/[—=+4/=+ h3 327eq, 20
qu,edge( ) {3 |:\/2+h2 \/hz 2+h2J } eq (20)

— 1 1 9 1],z

Reqscrew(h) = {3 |: ? + 2_’_7’12+ n h3}2req (21)

Eeq(h) =P Eeq,edge(h)+P2Eeq,screw(h) (22)

Eq. (22) defines a coefficient for ellipsoidal precipitates in the
Orowan mechanism. Replacing Req by Req(h) in Eq. (1) provides a
general equation, which is applicable for spherical and ellipsoidal
precipitates.

Fig. 4 shows the normalized equivalent outer cut-off radius
E:q(h)zﬁeq(h)/(Zreq) for a system including pure edge or screw
dislocations. The value of E:q(h) decreases for prolate particles and
increases for oblate particles. There is no remarkable difference
between edge and screw dislocations for the Orowan mechanism.
It means, the correction factor is independent of the dislocation
character.

3. Conclusion

In the present model, we take into account that the free
distance between two precipitates decreases when the precipitate
shape deviates from spherical. This effect generally increases the
yield strength of the material, which has been demonstrated in
previous work. In our present treatment we show that the
increase of the equivalent radius of oblate precipitates in both,
shearing and non-shearing mechanisms, additionally increases the
final yield strength.
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In contrast, the decrease of the equivalent radius of prolate
precipitates decreases the final yield strength. This negative effect
is partially compensated by the decreasing mean distance between
prolate precipitates such that the final yield strength is close to the
one of spherical precipitates.
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In precipitation strengthening, the lattice misfit between precipitate and matrix produces a strain field around precipitates, which
impedes dislocation movement. In this paper, a strengthening model is presented, which delivers the stress increment associated with
the strain field around large homogeneous spherical precipitates. In contrast to previous work, this study takes into account that the
effective resistance force on the dislocation depends strongly on the relative position of the slip plane to the precipitate center. On
ignoring this effect, the maximum shear stress due to the strong and shearing mechanism is generally underestimated. The results are
presented in the form of discrete equations based on the evaluation of the resistance force in front of a moving edge or screw
dislocation and, alternatively, with a correction factor for conventional strong and shearing equations.
© 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Coherency strengthening; Large precipitate; Shear stress

The coherency effect describes a common
strengthening mechanism, which exists in most precipi-
tation strengthening systems. The lattice misfit between
a coherent precipitate and the surrounding matrix pro-
duces a strain field around the precipitate, which hinders
dislocation movement and which leads to dislocation
bending. A precipitate is called “small”, when the oper-
ative strengthening mechanism is weak, because the
maximum angle between two arms of a dislocation
behind a precipitate, the “outer cut-off angle” ¥, is
between 180° and 100°. They are denoted as “large” pre-
cipitates, when the resistance force is high enough to be
in the region of the strong mechanism by decreasing ¥
between ~100° and 0° [1].

The only operative strengthening mechanism for
small precipitates is the coherency weak and shearing

* Corresponding author at: Christian Doppler Laboratory for Early
Stages of Precipitation, Institute of Materials Science and Technol-
ogy, Vienna University of Technology, Favoritenstr. 9-11/E308,
A-1040 Vienna, Austria. Tel.: +43 1 58801 30885; fax: +43 1 58801
30895; e-mail: mohammad.ahmadi@tuwien.ac.at

http://dx.doi.org/10.1016/j.scriptamat.2014.04.019

mechanism [1,2]. In contrast, the operative strengthen-
ing mechanisms related to large precipitates are the
weak and strong mechanisms simultaneously, depending
on the position of the slip plane with respect to the pre-
cipitate center. This paper analyzes the shear stress
increment of large precipitates by calculating the precip-
itate resistance force Fin front of the moving dislocation
in different slip planes, where the coherency strengthen-
ing problem involving large precipitates is treated as a
superposition of particles where the weak mechanism
is operative, and particles which act as strong precipi-
tates. Considering both, the weak (c-w) and strong
mechanism (c-s) for large precipitates, a gap in previous
model descriptions is closed.

Gerold and Haberkorn [3] formulated the resistance
force F in front of a moving edge or screw dislocation
in a homogeneously strained matrix, depending on the
precipitate radius r and precipitate lattice misfit (da/a)
as

FG) :4Gb|g|r(p(§) (1)

1359-6462/© 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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. 1 (1 + l)) Aa 2)
3\l -v/ a

where b is the magnitude of the Burgers vector, G is the
shear modulus, ¢ is the constrained strain produced by
the stress-free strain of linear lattice misfit, v is Poisson’s
ratio, da is the difference between lattice constants of
matrix and precipitate, a is the lattice constant of the
matrix, and ¢(z/r) is a function that relates the maximum
force to the dislocation position in the slip plane, with z
being the distance (always taken positive) of the slip plane
from the precipitate center. For a screw dislocation

=100 < 5

o) =y () "
and for an edge dislocation

o) =20ON1-() () <y ®
01 () =% ©

8()°

Figure 1 shows the dependence of the normalized
precipitate resistance force in front of edge and screw
dislocations with respect to their positions in the slip
plane evaluated by Eq. (1) for varying z/r ratio.

The resistance force F has a maximum in front of
screw and edge dislocations when z/r=1 and z/r=
\/2/2, respectively. The maximum resistance force Fpax
in front of an edge dislocation is two times higher than
that in front of a screw dislocation. At z/r > 1, no phys-
ical contact between precipitate and dislocation occurs,
but F is nevertheless non-zero, because the strain field
part lying outside the precipitate still contributes to
the impedance of dislocation movement.

Figure 2 exemplarily compares the resistance forces
in front of a screw dislocation for the cases of small
(Fsman) and large (Fi,ge) precipitates. The argumenta-
tion for edge dislocations is analogous. The maximum
shearing force produced by a bent screw dislocation
behind a precipitate at W=0° is F=2T, indicated by
the vertical line in Figure 2.

2 T

18 \ ——edge
1.6 - = screw
14 \

\
12 \ Fmax, screw

z/n)

e 4
0.8 /
—————— AR Fmax,edge
0.6 4
0.4 4

0.2 4

0

0 0.5 1 1.5
Normalized Force

Figure 1. Normalized resistance force in front of edge and screw
dislocations due to the strain field around a precipitate.
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Figure 2. Resistance force of small and large precipitates, shown
schematically. The interaction between large precipitates and a
dislocation produces two “weak” regions (A and C) and one “strong”
region (B).

T is the dislocation line tension, which is given as
[1,2].

T(0) = % (1 —i—u—livl()sin(?) > In (;_Z,) ™

where 6 is the angle between the dislocation line and its
Burgers vector, and r, and r; are the outer cut-off and
inner cut-off distances, respectively. The logarithmic part
was approximated by Ardell [2] with In(r./r;)~4. In the
present context, this value is irrelevant, because it cancels
out on comparison of Egs. (23) and (24) with Eq. (8).

Consider the case where the resistance force for small
precipitates Fy.; at its maximum at (z/r) =1 is lower
than 27. Consequently, the dislocation can shear the
weak precipitate when ¥ is between 180° and 100°. In
contrast, for a large precipitate and for the present
example, Fi,ree can reach up to 27 when ¥ is between
100° and 0° in region B. Consequently, the critical
precipitate radius for transition from small to large is
Teritedge = T/(ZGbg) and Ferit,screw — T/(GbS) for edge
and screw dislocations, respectively, where ¥ reaches a
value close to 0°. In Figure 2, three different regions,
A, B and C, are distinguished to describe the interaction
between a screw dislocation and a large precipitate,
where region B is strong and shearable, and regions A
and C are weak and shearable.

Possible regions of interaction between a dislocation
and small precipitates are shown schematically in Fig-
ure 3a. In this case, the precipitate resistance force is
lower than 27 in all planes intersecting the precipitate
region, and the precipitate acts as c-w in all the interac-
tions. The final shear stress is then simply given by the
superposition of all distinct shear stress contributions
based on the sum of square method, as suggested in
Refs. [1,2,4]. Figure 3b depicts the situation where a dis-
location interacts with large precipitates. If the interac-
tion between two sides of a dislocation is c-w (regions
A and C) or c-s on both sides of a dislocation, the
sum of square method is also applicable for evaluation
of the shear stress [1,2,4]. Otherwise, when a precipitate
is c-w on one side of a dislocation and c-s on the other
side, Ardell’s method is used, described below [2].
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Region C

Region A

e

Slip plane
(a) Small precipitate
Region C Region B Region A
Slip plane 40_

(b) Large precipitate

Figure 3. Interaction between a dislocation in its slip plane with the
strain field around (a) small coherent precipitates, where the operative
strengthening regime is weak and (b) large coherent precipitates in
different regions: (A) where (z/r)<(z/r)min; (B) where (z/1)min<(z/r)<
(2/7 )mdx, (C where ("/r) Z/r)mdx

Ignoring the effect of the c-w mechanism in regions A
and C, Brown and Ham [1] proposed an expression for
the shear stress increment of strong precipitates, where ¥
is close to 0°, but the precipitate still acts as shearable, as

Tstrong B&H = J]bM;Z: (!//(I"))% = J br \/gw( ))% (8)

with

wir) =22 ©)

-G

Ass 18 the free distance between two precipitates in slip
plane, J is a correction factor (equal to 0.8) for the free
distance between randomly distributed precipitates in a
slip plane, and f'is the preci 1tate hase fraction. M is a
constant equal to 2 and 2" x 3%8 for screw and edge
dislocation, respectively [5]. Eq. (8) is widely used in
the literature [6-9] for evaluation of the c-s mechanism.
The strengthening effect arising from regions A and C
(Fig. 2) is ignored, however, in Eq. (8) [1]. Whereas this
simplification is not critical for region A (decreasing effect
with increasing precipitate size), region C can have a con-
siderable impact on the shear stress increment for strong
precipitates.

For the c-w contribution in regions A and C (Fig. 2)
and equal dislocation character in all regions, the shear
stress increment due to the interaction between screw

dislocations and a precipitate is [2]
/ e () &
(2/7) e

\// (/") min dZ
TC*W l
r max

(11)
The shear stress increment of the strong part B is
2 T (2/7)max dZ
s =J — — 12

Following the aforementioned treatment to combine
c-w and c-s regimes, Ardell’s generalized law of mixture
is used [2], based on the computer simulation experi-
ments of Foreman and Makin [10], which is proposed
for all obstacles in the matrix as a generalization of
the sum of square method, with

q q
Trotal = c w + Tees

(13)

where the exponent ¢ is typically between one and two.
For combinations of ¢-w and c-s, Ardell [2] proposed a
value of ¢ = 1.4.

The (z/F)min and (z/r)max values for interaction
between screw dislocation and precipitate are (7/( Gebr))
and (Gebr/(T))">, respectively, by replacing F=2T in
Eqgs. (1), (3), and (4). The shear stress of the weak and
strong parts (Egs. (11) and (12)) then becomes

o7 (11 :
ey = e 4 ——— - — 14
Te—w,screw b;Lss {4¢(r) + 5 l//(l")} ( )
and
2T
Tc—:,screw - JbTm{ r W N } (15)

Replacing 1..,, and 1.5 in Eq. (13) by Egs. (14) and (15)
delivers

2T 1 1
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Figure 4 shows the ratio of shear stress in region A
divided by shear stress in region C (=R;) for the total
shear stress of a strong prec1£>1tate, assuming 7 =
(2/m)Gb*, v=1/3,b=2.5x 10" and ¢ = 0.1.

When the precipitate radius is <1.5 nm, the operative
strengthening mechanism is c-w. In this range, the share
stress contribution of region A is higher than that of
region C, where R; is >1. With increasing precipitate
radius, R; decreases, and the impact of region C on
the total shear stress overcomes region A. When the
precipitate radius reaches ~9 nm, R; becomes <10%.
The curve R, shows the shear stress ratio of the c-s
mechanism divided by the c-w mechanism. The R, value
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Figure 4. Ratio of shear stress in different region of coherent
precipitate using T = (2/n)Gb*, v =1/3, b=2.5x 1071 and ¢ = 0.1.
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is zero in the early stage (radius <1.5 nm). It increases
with increasing precipitate size until it reaches a plateau.
For increasing precipitate size, regions B and C provide
the main contributions to the total shear stress.

For evaluation of the interaction between edge
dislocation and precipitates, the same constraints and
calculation steps as used for the case of screw disloca-
tions are applied. Consequently, replacing F=2T in
Egs. (1), (5), and (6), the value of (z/r)min becomes

OB )

and (z/r)max delivers

z V2 1 S T
(=21 1(21//(r)>’ T S Ghe

V3T
<r<
STS36he (18)
z 33 . N3T
— e <r<
<r)max Z VY, i e S rs oo (19)

Eq. (18) emphasizes that, in the early stages of precip-
itate evolution from small to large size, (z/r)max differs
from Eq. (19). For simplicity, this small step is ignored
in Eq. (18), although this effect produces a minor error
just in the mentioned precipitate size. Consequently,
for the shear stress of the c-w and c-s regions in a large
precipitate with an edge dislocation, one obtains

2T s|16 V2 f L)
Teedge = 7 2y (r)) 33570 (1 +4/1- <T(r)> )
(9—5 1- (%) )] +% 3Tltﬁ(r)} (20)

Te—s,edge = J

and

=

2T 3! 11 1 \*
V7373 1_<2¢(F)>

(21)
Substituting Egs. (20) and (21) into Eq. (13) delivers

2 16 V2 1\’
Ttatal,zdge = % (Zl//(r))3 g - % (1 + 1- <2|//(V)) )

X

38 11 1\’ |
+ Tw(r)_%_i 1‘(2%»)) @)

Accordingly, the relative contribution of region A
decreases with increasing precipitate size, and Egs. (16)
and (22) can thus be simplified for large precipitates,
i.e. negligible region A, as

=§7T{ 5 wmrw[ i)

1

o

[N

Trotal screw

and
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-

2T 1 '
Tiotal edge = m g T lﬂ(l”) +J T W(r)

(24)

Combination of Egs. (23) and (24) with Eq. (8) delivers
a correction factor for the shear stress of large precipitates
for both, edge and screw dislocations, as

1\
Tiotal = { (ﬁg) + 1} X Tstrong B&H (25)

Eq. (25) shows that identical correction terms of the
simplified model description for 7.5 [1] are required
for both screw and edge dislocations.

Consequently, the Brown and Ham equation (Eq.
(8)) needs a modification to reflect these contributions.
If one assumes J = 0.81 as a correction factor for ran-
domly distributed precipitates in a slip plane, and
g = 1.4 for the mixture of contributions from c-w and
c-s mechanisms [2], the strengthening equation for
strong coherent precipitates from Brown and Ham [1]
significantly underestimates the strengthening contribu-
tion by ~30%.
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Abstract

In the present study, we describe a comprehensive and consistent physical model for the yield
strength change in Allvac® 718Plus™ caused by precipitation strengthening. The model
incorporates the effect of different shearing and non-shearing mechanisms with respect to atomic
continuity between the lattices of precipitates and matrix. We demonstrate that coherency and anti-
phase boundary effects are the major strengthening mechanisms in this alloy. The final yield
strength of Allvac® 718Plus™ during aging is investigated using the thermo-kinetic software
MatCalc. The calculated final yield strength evolution is consistent with experimental results.

1 Introduction

Engine performance in aerospace and power generation improves with increasing operation
temperature, thus emphasizing the importance of understanding materials with good mechanical
properties at high temperatures. Inconel 718 is a nickel based superalloy, which is widely used in
aerospace and gas turbine engine applications because of superior high temperature mechanical
properties [2] up to 650°C.

In 2004, Allvac® 718Plus™ (hereafter 718Plus) was introduced by ATI Allvac, giving 55K higher
service temperature compared to Inconel 718 [3]. 718plus has a similar chemical composition to
Inconel 718, however, with higher Ti+Al, Al/Ti ratio and approximately 1% Tungsten. In addition,
approximately 50% of Fe is replaced by Co. With this chemical composition, y' formation is
strongly favored in place of y", thus eliminating the weakening effect in 718 due to "
transformation. The y' phase is a stable fcc (Ni,Co);(AlTi,Cr,Nb) precipitate with L1, structure,
with a roughly spherical morphology at low phase fractions and remaining coherent even after over
aging [2, 4].

The focus of this paper is the anti-phase boundary (APB) and coherency strengthening effects
caused by y' precipitation.

2 Experimental and computational procedures
MatCalc version 5.52 (rel 0.031) is used for simulation with the thermodynamic database
mc_ni_v2.000_015 and the diffusion database mc_ni_v2.000_001 [1]. The composition of 718Plus

is given in Table 1.

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP,
www.ttp.net. (ID: 128.131.142.66-25/04/14,10:57:58)
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Table 1: Alloying composition of Inconel 718Plus in weight percent [Wt.%]
Al Co Cr Nb C Fe Mo Ti W Ni
[Wt.%] 1.46 9.13 17.42 5.48 0.028 9.66 2.72 0.71 1.04 bal.

The conventional heat treatment process applied in this work is solution annealing at 975°C for 60
minutes, followed by cold water quenching and aging at 788°C. Hardness and yield strength are
measured subsequent to heat treatment and at room temperature. Vickers hardness is measured with
a Vickers hardness tester FV 4E to identify precipitation hardening at five aging times (1, 5, 10, 25
and 50 hours). Yield strength is measured by compression testing carried out three times for each
sample with Zwick Z250 testing devices. For transmission electron microscopy (TEM) analysis, the
specimens are ground with silicon carbide papers down to 0.1mm and electropolished in a solution
containing 5% perchloric acid and 95% ethanol at 32 V and -10 °C. The FEI Tecnai F20
microscope is operated with 200 kV acceleration voltage. All samples are pre-cleaned in a He
plasma in order to remove surface oxides and impurities.

3 Strengthening model

The final yield strength in heat treatable materials is calculated as a superposition of the inherent
stress of the base metal g;, grain boundary strengthening o, solid solution strengthening o, , work
hardening o, and precipitation strengthening oy, [6].

3.1  Precipitation strengthening. The shearing component of the precipitation strengthening
process contains several different strengthening mechanisms: (i) interfacial strengthening, (ii)
modulus strengthening, (ii1) coherency strengthening and (iv) APB strengthening. Coherency and
APB effects are the two predominant strengthening effects in the 718Plus superalloy.

3.1.1 Shearing mechanisms. In this section, we describe the coherency and APB effects for the
cases when precipitates are small and shearable (weak mechanism) or large and shearable (strong
mechanism).

Coherency effect. The difference in lattice parameter between the precipitate and matrix produces a
strain field around the precipitate which hinders dislocation movement. Brown and Ham [7]
proposed a strengthening equation for weak and shearable precipitates based on the Gerold and
Haberkorn [8] coherency model as

Ghelr |2
T =kl —1, 1
Coh,weak { sz T(Q) J ( )
with,
2 Gb*(1+v-3sin’ @ r
E=— and T(8)= In| <. 2
R e g

k is a constant equal to 4.11 and 1.38 for edge and screw dislocations, respectively. G is the shear

modulus, assumed to be 78.0 GPa [4], b is the Burger’s vector (0.254 nm), r is the precipitate mean
radius and L the surface-to-surface distance between two precipitates. v is Poisson's ratio (~0.33), ¢
is the constrained strain produced by the stress-free strain of lattice misfit J [9]. J is the strain
measured with 0.004 in this study by TEM analysis. r, is the outer cut-off distance, which is equal
to the distance between two particles along the dislocation line for shearable precipitates [7, 10]. r;
is the inner cut-off distance (=2b [10]) and O is the angle between the dislocation line and its
Burger’s vector in Eq. 2.

The shear stress in Eq. 1 is valid for weak precipitates. For strong precipitates, Brown and Ham [7]
proposed the following strengthening equation

_m TB(Q)GSI_’ 4 3)
L b’ ’

s

TCoh,srrong

with m being equal to 2.1 and 2 for edge and screw dislocations, respectively.
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Anti-phase boundary effect. The anti-phase boundary effect is a strengthening mechanism for
ordered precipitates during shearing by dislocations. For weak precipitates

- .
r _ 2l TYaps T |© 7 Vars (r) , (4)
APB ,weak bLS 4T 3 bL?

where yapp is the APB energy of y' (=0.111 Jm? |, Ref. [13]). For strong and shearable ordered
precipitates, Hiither and Reppich [11] proposed
1

2WT [ 7 ¥ ips ro)?
APB ,strong ( b Ls j[ 4 WT ( )

where w is a parameter introduced for remaining dislocation segments incorporating also some
other uncertainties. Its value is estimated to be 2.8.

3.1.2 Non-shearing mechanism. At the last stage of aging, the precipitate resistance force in
front of the dislocation is sufficiently high to block dislocation movement. The yield strength
increases even if the precipitates are still coherent with the matrix. In 1944, Orowan [12] proposed a
strengthening equation for spherical and non-shearable precipitates. This equation is modified to the
generally accepted form by Ashby [5] and Brown and Ham [7] as

__Gb 1 (7mr
= ln[2 j (6)

Tor —
Orowan 27_[ ,1—'[) LX r

3.2  Mixture of shearing mechanisms. A general approximation for superposition of different
weak or strong strengthening mechanisms i was proposed by Ardell [10] to calculate the yield

strength increase due to the different strengthening mechanisms with
1

o,,= M (Téfh,i + Ti&f’B,i )E > (7)
where M is the Taylor factor for converting shear stress to yield strength (M ~ 2.6) [14].

4 Results and discussion

The formation of y' precipitates during aging produces the major effect on the final yield strength in
718Plus. The proposed strengthening equations in section 3.1 are functions of size and distribution
of y', which vary as a consequence of the applied heat treatment. Fig. 1 shows TEM dark field
images of 718Plus after aging at 788°C for 1, 10 and 50 hours.

(a) (b) | (©)
Fig. 1: Dark field images of 718Plus after aging at 788°C for (a) 1 hr (b) 10 hrs (c) 50 hrs.

From Fig. 1, it is clear that the size of the spherical y' precipitates increases during aging, while their
number density N decreases. Simulation of mean radius and number density of y' is shown in Fig. 2
compared with the experimental results of measurements from the TEM investigation.
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Fig. 2: Simulation result of (a) mean radius (b) number density for 718Plus as a function of aging
time at 788°C compared with experimental TEM results

N; appears in the strengthening equations indirectly as L=1/\N,. The simulated and experimental
results of aging shown in Fig. 2 demonstrate that precipitate mean radius increases during aging
time (improves yield strength) whereas precipitate number density decreases (reduces yield
strength).

The experimental results of final yield strength shown in Table 2 represent the maximum yield
strength after 10 hours, which is 955 MPa. It means before 10 hours, the effect of mean radius
increase dominates against the number density decrement and, as a result, the yield strength
increases. After 10 hours, the effect of number density decrement overcomes the mean radius
increase and yield strength reduces.

Table 2: Experimental results of yield strength of 718Plus as a function of aging time at 788 °C

1hr Shr 10 hr 25hr 50 hr
Yield Strength [MPa] 883 900 955 923 900
600 1000
(a) Weak (b)

- = Strong 900
Total + Exp

wu
S
(=]

....... Orowan 800

>
(=]
(=]

— Rrecipitate

w
(=]
(=]

Shear stress of coherency effect (MPa)

200 B bk T
100 /
100 /
|/
0 0
0 10 40 50 0,1 100

20 30 1 10
Time (hr) Time (hr)

Fig. 3: Simulation of strengthening (a) coherency effect (b) contribution of all strengthening
components in final yield strength.
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Fig. 3(a) shows simulation results of weak and strong regimes in coherency strengthening
independent of other mechanisms, as described in Egs. 1-3, compared with the Orowan Eq. 6. It is
apparent from Fig. 3 (a) that the weak strengthening mechanism defined in Eq. 1 strongly depends
upon precipitate radius and has less dependency upon the precipitate free distance. Consequently, in
the weak strengthening regime, the shear stress increases by precipitate coarsening during aging.
The decrement in strong strengthening regime during aging is due to the weak dependency of strong
strengthening equation on the precipitate radius, which results in strong dependency upon the
precipitate free distance. Fig. 3 (a) indicates that the operative strengthening regime up to 20 hours
is the weak regime, which is replaced by the strong strengthening regime later.

In the same way, the yield strength increase due to the APB effect based on Eqgs. 4 and 5 can be
simulated. The APB mechanism contributes to the final precipitation strengthening in addition to
the coherency effect although this effect is not as significant as the coherency strengthening.

Eq. 7 defines the method used for calculation of total weak and strong precipitation strengthening
considering coherency and APB effects. In this study, the y' precipitate acts as a shearable
precipitate even if it has an average diameter of 55 nm.

Fig. 3 (b) shows the magnitude of total yield strength in 718Plus where all the strengthening
components except precipitation strengthening are held constant (=300 MPa) during aging. As
displayed in this plot, the main contribution to the total yield strength is the precipitation
strengthening, which provides more that 65 % of the total yield strength at peak hardness.

5 Conclusion

o The final yield strength in 718Plus is a combination of contributions from grain boundary,
solid solution strengthening, work hardening and precipitation strengthening, in which precipitation
strengthening has the highest effect.

o Coherency and APB effects are the two significant strengthening components in the
shearing mechanism, and simulation results show that coherency has stronger effect than APB.

. The lattice misfit between y' precipitates and the matrix is small, consequently precipitates
stay coherent even after a long aging time.

. Precipitation strengthening increases during aging when the phase fraction of y' increases. At
the peak of yield strength, the phase fraction of y' is almost constant. Further aging leads to
precipitate coarsening, which subsequently reduces the yield strength.

References:
[1] Information on http://www.matcalc.tuwien.ac.at/

[2] O.A. Idowu, O.A. Ojo, M.C. Chaturvedi, Effect of heat input on heat affected zone cracking in
laser welded ATI Allvac 718Plus superalloy, Mater. Sci. and Eng. A 454-455 (2007) 389—
397.

[3] W.D. Cao, US Patent No.: 6,730,264B2 (2004).

[4] L. Whitmore, H. Leitner, E. Povoden-Karadeniz, R. Radis, M. Stockinger, Transmission
electron microscopy of single and double aged 718Plus superalloy, Mater. Sci. Eng. A 534
(2012) 413—423.

[5] ML.F. Ashby, ‘The theory of the critical shear stress and work hardening of dispersion-hardened
crystals’, in: G.S. Ansell, T.D. Cooper, F.V. Lenel (Eds.), Metallurgical Society Conference,
vol. 47, Gordon and Breach, New York, 1968, pp.143-205.

[6] R. Schnitzer, S. Zinner and H. Leitner, Modeling of the yield strength of a stainless maraging
steel, Scripta Mater. 62 (2010) 286-289.



12 THERMEC 2013 Supplement

[7] LM. Brown, R.K. Ham, Strengthening Methods in Crystals Elsevier Publishing’, ed. Kelly and
R. B. Nicholson, Elsevier, Amesterdam, The Netherlands, 1971, pp. 9-135.

[8] V. Gerold, H. Haberkorn, On the critical resolved shear stress of solid solutions containing
coherent precipitates, Phys Status Solidi (b) 16 (1966) 675-684.

[9] J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related
problems, Proc. Roy. Soc. A241 (1957) 376-396.

[10] A. J. Ardell, Precipitation hardening, Metal. Trans. 16A (1985) 2131-2165.

[11] W. Huther, B. Reppich, Interaction of Dislocations with Coherent, Stress-Free, Ordered
Particles, Z. Metallkunde, Bd. 69 (1978) 628-634.

[12] E. Orowan: Symposium on Internal Stresses in Metals and Alloys, Session III Discussion,
Institute of Metals, London, England, (1948) 451-453.

[13] A. J. Ardell, J. C. Huang, Antiphase boundary energies and the transition from shearing to
looping in alloys strengthened by ordered precipitates, Phil. Mag. Lett. 58 (1988) 189-197.

[14] B. Clausen, T. Lorentzen, T. Leffers, Self-consistent modelling of the plastic deformation of
f.c.c. polycrystals and its implications for diffraction measurements of internal stresses, Acta
mater. 46 (1998) 3087-3098.



PUBLICATIONS

Paper 5

78



Materials Science & Engineering A 608 (2014) 114-122

Contents lists available at ScienceDirect

Materials Science & Engineering A

journal homepage: www.elsevier.com/locate/msea

MATERIALS
SCIENCE &
ENGINEERI

ING

Yield strength prediction in Ni-base alloy 718Plus based
on thermo-Kkinetic precipitation simulation

@ CrossMark

M.R. Ahmadi *"*, E. Povoden-Karadeniz°, L. Whitmore ¢, M. Stockinger ¢, A. Falahati ?,

E. Kozeschnik "

@ Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstr. 9-11/E308, A-1040 Vienna, Austria
b Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstr.

9-11/E308, A-1040 Vienna, Austria

€ Christian Doppler Laboratory “Early Stages of Precipitation”, Department of Physical Metallurgy and Materials Testing, Montanuniversitdt Leoben,

Franz-jJosef StrafSe 18, 8700 Leoben, Austria

d Bohler Schmiedetechnik GmbH & Co KG, Mariazellerstr. 25, A-8605 Kapfenberg, Austria

ARTICLE INFO ABSTRACT

Article history:

Received 14 February 2014
Received in revised form

10 April 2014

Accepted 16 April 2014
Available online 26 April 2014

Keywords:

Precipitation strengthening
Solid solution strengthening
Shearing mechanism
Precipitate radius
Precipitate resistance force

The yield strength of Allvac™ 718Plus™ during aging is computed using integrated physical models that
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1. Introduction

The performance of gas turbines and aero-engines can be
improved by increasing the operating temperature of these devices.
Whereas the Ni-base superalloy Inconel 718 shows superior mechan-
ical properties up to 650 °C [1], the alloy Allvac® 718Plus™ (hereafter
718Plus) developed by ATI Allvac in 2004 can be operated at even 55 K
higher service temperature. This advantage is accomplished by alloy-
ing with Co and W, and adjusting the Al/Ti ratio, altogether favoring
the formation of ordered cubic L1,-type (Ni,Co)s(ALTi,Cr,Nb,W) y' over
tetragonal DOx,-type ordered metastable (Ni);(Nb) y” [2]. To demon-
strate the effect of alloying elements on the phase stabilities at high
temperatures, in Fig. 1, the computed molar equilibrium phase fraction
of ¥ and of metastable y” (the equilibrium phase 5 suspended) with
the thermodynamic database mc_ni_v2.003 [3] at 700 °C is presented
as a function of the Al/Ti and Co/Fe ratios at constant weight fractions
w(Nb)=0.055, w(Mo)=0.03, w(Cr)=0.17 and w(Ti)+w(Al)=0.02,

* Corresponding author at: Christian Doppler Laboratory for Early Stages of
Precipitation, Institute of Materials Science and Technology, Vienna University of
Technology, Favoritenstr. 9-11/E308, A-1040 Vienna, Austria. Tel.: +43 1 58801 30885;
fax: +43 158801 30895.

E-mail address: mohammad.ahmadi@tuwien.ac.at (M.R. Ahmadi).

http://dx.doi.org/10.1016/j.msea.2014.04.054
0921-5093/© 2014 Elsevier B.V. All rights reserved.

w(Co)+w(Fe)=0.18, representing typical sums of y'-forming alloying
elements.

In contrast to the y” phase, which has a weakening effect on the
material as it transforms to orthorhombic thermodynamic equili-
brium NisNb (5-phase) under long-term operation, y’ remains stable
and coherent even in over-aged conditions [1,4]. This should be
beneficial in terms of precipitation strengthening, which is investi-
gated in the present study by mechanical tensile testing combined
with microstructural analysis using transmission electron microscopy
(TEM). On comparison of the experimental results with our yield
strength modeling and simulation, we were able to determine the
prevailing physical strengthening mechanisms. For yield strength
modeling, we used an integrated approach considering all types of
contributions to the final yield strength (o), which have been
implemented in the solid-state transformation kinetics software
MatCalc, version 5.60 (rel 0.005) [5-7] by the authors of this paper.
In the description of strengthening mechanisms, the main focus is on
the shearing of ¥ precipitates with anti-phase boundary (APB) and
coherency effects. These are observed to be the dominating mechan-
isms over the modulus effect, since similar shear moduli of matrix
and vy’ precipitates will not produce high resistance forces in front of
a moving dislocation [8,9]. The interfacial effect is assumed to play
only a minor role, too [9,10].
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Fig. 1. Computed molar phase fractions of y’ and y” (delta phase suspended in the
calculation) at Al/Ti wt. ratios from 0.2 to 0.8 and varying Co-content.

Table 1
Chemical composition of 718Plus.

Al Co Cr Nb C Fe Mo Ti w Ni

wt.% 146 913 1742 548 0.028 9.66 272 0.71 1.04 Balanced

2. Experimental

Hardness and compression tests of heat-treated 718Plus sam-
ples were used to analyze changes of precipitation hardening as a
function of aging time. The composition of 718Plus used in this
survey is given in Table 1.

A conventional heat treatment process is applied in this work.
The specimens are solution annealed at 975 °C for 60 min, con-
tinued by water quenching and aging at 788 °C temperatures for
different aging times (1, 5, 10, 25 and 50 h). Vickers hardness is
determined using a Reichert-Jung Micro Duromat 4000 hardness
tester equipped with a Vickers diamond pyramid indenter. The
compression tests are reproduced twice for each point using a
Bdhr-Thermoanalyse DIL805A/D quenching and deformation dilat-
ometer. The dimensions of the cylindrical specimens are 4 mm
diameter and 8 mm length.

The specimens for TEM investigation are ground with silicon
carbide paper to approximately 0.1 mm and electro-polished in a
solution containing 5% perchloric acid and 95% ethanol at 32 V and
—10 °C. They are cleaned in He plasma to remove all the oxides
and impurities of the surface. An FEI Tecnai F20 FEGTEM is utilized
at 200 kV acceleration voltage for microstructure analysis.

Transmission electron microscopy (TEM) was used to deter-
mine the mean radius, number density and phase fraction of the y’
precipitates. Dark-field imaging was used to resolve the individual
precipitates, combining the diffracted beams arising from the
unique chemical ordering of the y' phase. Approximately 1000
precipitates were measured in Digital Micrograph for each heat
treatment to determine the mean radius. Number density and
phase fraction were calculated by measuring the number of
precipitates in a known volume of the specimen. The volume
was determined by area measurement from TEM images and
thickness measurement using electron energy-loss spectroscopy
(EELS) and the standard log-ratio method described in [4]. Only

regions less than 100 nm thickness were used for this analysis to
avoid inaccuracy due to overlap of precipitates. A correction factor
was applied, according to the procedure described in [4], to correct
for the fact that a proportion of precipitates intersect the foil
surface.

3. Modeling of precipitation

To calculate the nucleation rate J of y’ precipitates per unit
volume and time, the classical nucleation theory [11] is used:

R

—G Tj
s incub
]_NOZﬁ exp <kBTk>exp <—t ), (1)

where Ny is the number of potential nucleation sites, Z is the
Zeldovich factor, g* is the condensation rate of solute atoms at a
cluster of critical size, kg is the Boltzmann constant, Ty is tem-
perature, G* is the energy required to form a nucleus of critical
radius, zincup 1S the incubation time and t is time. G* depends on
the chemical driving force evaluated by CALPHAD-type thermo-
dynamic parameters stored in mc_ni_v2.003, and the interfacial
energy between matrix and precipitate. The interfacial energy is
evaluated with the generalized broken bond (GBB) approach as
described in Ref. [12] and taking into account interfacial curvature
size effects [13].

The precipitate growth kinetics is simulated with the SFFK
mean-field model for multi-component multi-phase systems [5,6].
In a precipitation environment of an arbitrary number of spherical
particles nucleating and growing in a unit volume of matrix phase,
the total Gibbs energy of the system is described by

n m Az’ n m
G= ¥ Nouoi+ X —3k</1+ )Y Cki#ki>+ Y 4npiy, )
i=1 k=1 i=1 k=1

where Ny; is the number of moles of component i in the matrix
phase and 1 is the contribution from elastic energy. x4, p and ¢ denote
chemical potential, radius and concentration, respectively. The index
k refers to the index of individual precipitate size classes [6].

During isothermal heat treatment, the total free energy of the
system decreases and the precipitate microstructure evolves. The
difference in free energy between the initial and the evolved state
is dissipated. The free energy dissipation takes place by interface
movement, diffusion of atoms inside of the precipitates and
diffusion of atoms in the matrix. The total rate of dissipation is
given as the sum of these individual contributions. The rate of total
free energy change is connected with the free energy dissipation
rate using the thermodynamic extremum principle [14-16], and
the system evolution is given by a set of linear equations, in which
the rate of radius and chemical composition change of each
precipitate is evaluated. To determine the evolution of the entire
precipitate population, the rate equations are integrated numeri-
cally under the constraint of mass conservation. The integration is
carried out based on the numerical Kampmann-Wagner approach
[6,17]. For every time increment in the precipitation simulation
and for each precipitating phase, the growth kinetics and the
change in composition are evaluated based on the evolution
equations [5] and the nucleation rate expression Eq. (1). Further
details about the models and the numerical treatment of the
evolution equations are given by Svoboda et al. [5] and Kozeschnik
[18]. In MatCalc, the evolving precipitate properties under user-
defined heat treatments are directly used for the simulation of
yield strength.

4. Yield strength modeling

The final yield strength (o) in annealed crystalline materials is
constituted by grain boundary strengthening (o), solid solution
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strengthening (o) and precipitation strengthening (oy,;), which
are simply combined linearly [19] as

3

In the following, the models for individual strengthening con-
tributions to oy are briefly reviewed.

Oy=0yg+0ys+0yp.

4.1. Grain boundary effect

Grain boundaries act as impenetrable barriers for dislocation
movement, and contribute, together with the friction stress a;, to
the yield strength of a crystalline matrix. This concept was
formulated by Hall [20] and expanded by Petch [21] as

klock

D

where o; is the friction stress of the crystal lattice to dislocation
movement, ko iS the locking parameter of grain boundary
hardening and D is the grain diameter [21,22]. Thompson [23]
determined the friction stress of Ni-based superalloys as
0;=21.8 MPa and kjocx=0.158 MPa m'/2.

“)

Oyg=0i+

4.2. Solid solution strengthening

The common equation describing the solid solution strength-
ening effect as reviewed by Butt [24] is

P
Oysi=KsiCi.

)

here, ks; is a strengthening constant for solute i, C; is the
concentration of solute i and p is a constant that, in general, varies
between 1/2 and 1 [25]. gy, defines the yield strength increment
due to solute i. In the proposed model of Labusch [26] and Nabarro
[27], p is 2/3 although, in the case of superalloys, Felthman [28]
proposed a value of p=1/2.

To evaluate the yield strength in multicomponent systems,
Gypen and Deruyttere [29] proposed a method to integrate the
overall yield strength increment of different alloying components
based on the following equation:

1/q
Oys = (Z (ks,icip)q>

where ¢=2 and p=1/2.

The strengthening constants ks; of alloying elements found in
Egs. (5) and (6) are indispensable for the evaluation of the solid
solution strengthening effect for oy. Mishima et al. [30] defined ks,
; experimentally for different alloying elements in binary systems
Ni-X, with X being an element from the transition metal group.
Their results are summarized in Table 2. Later, Roth et al. [31] used
these constants in a multi-component Ni-base system and found
good agreement between experimental and simulation results,
using the model for solid solution strengthening proposed by
Feltham [28] and given in Eq. (6).

(6)

4.3. Precipitation strengthening

At the early stages of aging of heat-treatable alloys, coherent
precipitates with sizes ranging from close to unit cell up to a few
nanometers govern the precipitation strengthening contribution to

Table 2
ks Strengthening constants of different alloying elements in Ni, from Ref. [30].
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oy. Lattice continuity (coherency) prevails at the precipitate-matrix
interface, and the precipitate resistance force F is not high enough
to bend an approaching dislocation strongly. This interaction
between precipitate resistance force F in front of dislocation move-
ment and the dislocation line tension T needs to be examined in
order to distinguish the different regimes of precipitation strength-
ening from each other. Fig. 2 represents this relation for the case of
early precipitation of coherent particles.

Fig. 2(A) shows a situation where the outer cut-off angle ¥, lies
inside the limits of 120° and 180°. This region confines the regime
of weak and shearable precipitates. Under prolonged aging, the
precipitate resistance force increases as a consequence of increas-
ing precipitate size and the outer cut-off angle ¥, decreases from
120° to 0°. This region confines the regime of strong and shearable
precipitates (Fig. 2(B)).

Finally, for continued aging, precipitates often lose coherency
or the precipitate resistance force in front of the dislocation
movement increases beyond 2T, ¥.=0°. The precipitates are then
no longer sheared by dislocations. This situation is shown in Fig. 2
(C). Non-shearing precipitates are by-passed by the dislocation,
leaving behind a dislocation ring around the precipitate (Orowan
mechanism).

4.3.1. Shearing mechanisms

A specific feature of 718Plus is that the strengthening particles
(Ni,Co)s3(ALTi,Cr,Nb) y' remain coherent even after thousands of
hours in service. This makes 718Plus a suitable model system to
investigate the different strengthening contributions related to
shearing. These are (i) coherency strengthening, (ii) anti-phase
boundary (APB) strengthening, (iii) modulus strengthening and
(iv) interfacial strengthening. The models describing these effects
are reviewed in the following.

4.3.1.1. Coherency effect. The difference between lattice parameter
of the precipitate and matrix produces a strain field around the
precipitate, which interacts with the moving dislocation. Brown
and Ham [32] proposed a shear strengthening equation for weak

a b Cc
T T
T
v v P=z0°
F F F
T
T T
120° < ¥, < 180° 0°< ¥, <120° Y. =0°
Weak & shearable Strong & shearable Non-shearable
precipitate precipitate precipitate

Fig. 2. Schematic interaction between a dislocation and precipitates with
different sizes.

Alloying element Al Co

Cr

Nb Fe Ti

Strengthening constant (MPa at Fraction~'/?) 225 394

337

1183 1061 153 1015 775 977
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and shearable precipitates based on Gerold and Haberkorn's [33]
coherency model as follows:

<G3be3r3>1/2
TCoh.weak = K . (7)
on,weak L?T(Q)
with

1/1+0\Aa
8—§<1ﬂ,)? ®)
and

Gb* (1+0-3sin’0\, (T,

”9)—4”(1_1, “‘(?i) ©)

k is a constant equal to 4.11 and 138 for edge and screw
dislocation, respectively [9,32]. G is the shear modulus, b is the
Burgers vector, r is the precipitate mean radius and Ls is the
surface-to-surface distance between two precipitates. In Eq. (8), v
is Poisson’s ratio, ¢ is the constrained strain produced by the stress
free strain of linear lattice misfit § [34], a is the lattice parameter of
the matrix and Aa is the difference between lattice parameters of
matrix and precipitate.

For shearable precipitates, the outer cut-off distance, r,, is the
distance between two particles along the dislocation line [9,32]. r;
is the inner cut-off distance, which is the dislocation core radius
with values between b and 4b [9] and @ is the angle between the
dislocation line and its Burgers vector in Eq. (9).

For strong and shearable precipitates, Brown and Ham [32]
proposed the following strengthening equation:

3 1/4
m (T (0)Ger
TCoh,strong:L_s T 5 (10)

where m is equal to 2.1 and 2 for edge and screw dislocation,
respectively.

The surface-to-surface distance between two particles is a key
factor in the evaluation of precipitation strengthening. Sondereg-
ger et al. [35] proposed a statistical model for the free distance
between randomly distributed spherical particles as

In3 2

Ls= Jm +(2rss)” —2rss an
C

and

b Zn"sfrg
_ ]2 <

T =\3 Yo (12)

C

where 1. and n,. are specific radius and number density of
particles in an array of size classes.

4.3.1.2. Anti-phase boundary effect. Strengthening by the anti-
phase boundary effect occurs when dislocations shear ordered
particles. During shearing, the dislocations modify the local nature
of chemical atomic bonds in the slip plane and produce
energetically unfavorable atomic ordering in the precipitates. The
shearing dislocations travel in groups, where the number of
dislocations in a group depends on the type of order structure
(e.g. face-centered cubic L1,, tetragonal D0»,) and is important for
the ability of precipitates to restore to the perfect order structure
after the precipitate-dislocation interaction. The leading dislo-
cation creates an anti-phase boundary in the precipitate and the
trailing dislocation compensates the effect of the first one and
restores the ordered structure again.

For weak precipitates, this mechanism contributes to the shear
strength as [36]

_ ) 2T rayapgr®/? 7Y appT
TAPB,weak—{b_LS[ 4T ] _ﬁ§ bL? s (13)

where yapp is the anti-phase boundary energy of the precipitate
and p is a constant between 0 and 1. As the trailing dislocation is
expected to be straight, g is chosen to be close to 0.5, here [36].
For strong and shearable ordered precipitates, we utilize the
expression proposed by Hiither and Reppich [37] with

2

2WT\ [ 7%y appT Y
TAPB,strong = <ﬂbL5> <#— 1) (]4)

where w is a parameter introduced for incorporation of the effect
of remaining dislocation segments as well as some other uncer-
tainties. Its value is assumed to be 2.8.

4.3.1.3. Modulus strengthening effect. If the dislocation energy
inside and outside the precipitate varies due to different shear
moduli of the precipitate and the matrix, this energy difference
potentially improves the shear stress. For the weak mechanism,
Nembach [38] obtained

2T [w11Gy — GIb(ar/4by] " (15)
TMod ,weak = bL, 2T 5

where w; and w, are two constants equal to 0.05 and 0.85,
respectively. G, is the shear modulus of the precipitate. For

strong and shearable precipitates, the modulus effect is
represented as [9,32]

911Gp — GIb? (n1/4b)™>
‘[Mod,strong:ul| P llJLS(”/ ) - (16)

4.3.14. Interfacial effect. A shearing dislocation produces two
ledges after entering and leaving a precipitate. This increases the
interfacial area in the affected regions, yielding an increase of yield
strength as [9,32]

2T b2
TChem,weak = m [h%} 5 (1 7)

for the weak mechanism and

2yieeb
TChem,strong = }I;I{Z: 5 (18)

for strong shearable precipitates. ye is the energy of the
precipitate-matrix interface created by the shearing dislocation.

4.3.1.5. Superposition of shearing mechanisms. For the simultaneous
effect of different shearing mechanisms to the total shearing
stress, Ardell [9] proposed the following expression for the
superposition of individual strengthening mechanisms:

— id q q qa 1
Typ =M +7hpp+ TMod + Tenem) %> 19

where M is the average value for converting shear stress to tensile
stress. In fcc polycrystalline materials, M~ 2.6 [39]. q is an
exponent, which lies between 1 and 2. Ardell [9] proposed a
value of g=1.8 for contributions of different weak or different
strong regimes.

4.3.2. Non-shearing mechanism
The strengthening formalism for spherical non-shearable pre-
cipitates described in Fig. 2(c) was developed by Orowan [40] and
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modified to the generally accepted form by Brown and Ham [32] as

MGb 1 T
Oorowan = ———=—In( =— ). 20
omn =351, (57) @0

This expression is utilized in the present investigation.

5. Result and discussion

In this section, the computed influence of grain size and solid
solution strengthening on the yield strength of 718Plus is dis-
cussed. Then, the models of Section 4 are used for the simulation
of precipitation strengthening. MatCalc version 5.60 (rel 0.005) is
applied for all types of equilibrium and kinetic simulations. The
thermodynamic database mc_ni_v2.003.tdb and the diffusion
database mc_ni_v2.003.ddb are used in the thermo-kinetic simula-
tions [3].

5.1. Grain size effect

In Nb-containing Ni-base superalloys, the & phase is respon-
sible for pinning of grain boundaries and, thus, limits free grain
growth at high temperatures. This, in turn, means that the grain
size strongly depends on the applied solution annealing tempera-
ture. In the present study, solution annealing below 1000 °C is
applied, which is below the solvus of the 5 phase in 718Plus. As a
consequence, the measured grain size of 718Plus after quenching
is small, approximately 20 pm, and the grain size effect produces
an increment in the final yield strength equal to oy =56 MPa (see
Section 4.1).

5.2. Solid solution effect

Fig. 3 shows the evolution of the computed solid solution yield
strength contributions of individual alloying elements in 718Plus
during isothermal aging at 788 °C based on the results of the
thermo-Kkinetic precipitation simulation (see next Section 5.3) and
the strengthening parameters discussed in Section 4.2. After
quenching and before aging, Nb has the strongest effect in solid
solution strengthening ( ~ 200 MPa) and Co has the weakest effect
(~ 12 MPa). During aging, the important effect of Nb diminishes,
as Nb migrates from the matrix into the y’ precipitates. The same
applies to the y-forming elements Al and Ti. In summary, using

320

160 ‘» e e

20 | -

Solid solution strengthening (MPa)

Co
10 ‘ -
0.1 1 10

Time (hr)

Fig. 3. Computed solid solution yield strength increments of different alloying
elements based on the thermo-kinetic precipitation simulation.

the suggested ks; values shown in Table 2 in the yield strength
computation, we observe a decreasing oy as a function of aging
time. The remaining elements, such as Cr and Mo, which prefer to
be dissolved in the matrix, cannot compensate for the loss of Nb,
Al and Ti due to the formation of y'.

5.3. Precipitation hardening effect

5.3.1. Experimental results

The precipitation strengthening equations in Section 4.3 build
upon the knowledge of the number density and mean radii of
precipitates from the thermo-kinetic simulation. Accordingly, the
yield strength increases roughly proportional to the precipitate
mean radius r and number density Ns, and inversely proportional
to the precipitate free distance L;. Consequently, the final yield
strength after a specific heat treatment can be evaluated, if the
precipitate distribution (number density and mean radii) and
precipitate properties (lattice mismatch, etc.) are known. Experi-
mentally, we have obtained these parameters by transmission
electron microscopy (TEM) analysis. For isothermally heat-treated
718Plus, the evolution of the y’ precipitate population is character-
ized by dark field TEM as shown in Fig. 4.

The size of the spherical y'precipitates increases with aging
time due to precipitate coarsening, while the number density of
particles decreases. Fig. 5 shows the experimental points of the
TEM measurements for (a) mean radius, (b) number density and
(c) phase fraction of y’ precipitates during the heat treatment
together with the results of the thermo-kinetic simulation.

5.3.2. Simulation results

Fig. 5 demonstrates that the trends of the simulated y' pre-
cipitate sizes (a) and number densities (b) reproduce the experi-
mental data well. The mean radius increases during aging, while
the number density of y precipitates decreases. The thermo-
kinetic precipitation results are used as input parameters for the
yield strength simulation, next.

Fig. 6(a) compares the simulated coherency strengthening
effect in the weak and strong regimes to predictions based on
the Orowan mechanism for y’ precipitates. The lowest strengthen-
ing value is assumed to define the operative strengthening
mechanism. The input parameters of our simulations are summar-
ized in Table 3, where we have used strengthening parameters
from the literature as well as parameters obtained from our
present microstructural investigation. From the results, we
observe that the weak strengthening regime depends mainly on
the precipitate radius, which increases strongly in the first hours
of heat treatment and continues to increase due to coarsening
(Ostwald ripening). On the other hand, a decreasing coherency
strengthening effect is observed during coarsening as a function of
aging time in the strong strengthening regime. This behavior is
related to the weak dependency of the coherency strong regime on
the precipitate radius relative to the precipitate free distance
according to Eq. (10).

Fig. 6(b) analyzes the computed individual yield strength
increment due to the APB effect. This effect is stronger than the
coherency effect. Somewhere in the middle of the present heat
treatment, the strong mechanisms for anti-phase boundary
strengthening replace the weak mechanisms. Fig. 6(c) shows the
yield strength increase due to the modulus strengthening effect.
Since the shear modulus of y’ precipitates is close to the values of
the 718Plus matrix (see Table 3), this effect makes up for a value of
less than 10 MPa. The chemical effect is even more insignificant
than the modulus effect; less than 5 MPa strengthening for the
weak mechanism is computed (see Fig. 6 (d)).
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Fig. 4. Dark field images of 718Plus during aging at 788 °C for different times: (a) 1 h, (b) 5h, (c) 10 h, (d) 25 h, and (e) 50 h.

Fig. 6(e) illustrates the simulated contributions of weak and strengthening mechanism in 718Plus aged at 788 °C is weak and
strong regimes obtained from the coherency, APB, modulus and shearable at the early aging hours (before 10 h aging) and non-
interfacial effects. From the plot, it is evident that the operative shearable at prolonged aging.



120 M.R. Ahmadi et al. /| Materials Science & Engineering A 608 (2014) 114-122

35

30

Radius (nm)

0 10 20 30 40 50
Time (hr)

25

64

w
N

[N
<)}

Number density (1021)

2 : : ; :
0 10 20 30 40 50

Time (hr)

c

Phase fractoin (%)

0 10 20

30 40 50

Time (hr)

Fig. 5. Simulation result of (a) mean radii, (b) number densities and (c) phase fractions of y’ aged at 788 °C compared with experimental TEM results (symbols).

The experimental total yield strength values, oy, illustrated in
Fig. 6(f) show a maximum at ¢,=1095 MPa after 10 h. From the
simulation results, we conclude that, before 10 h, nucleation and
growth of ¢ precipitates prevail and, thus, the effect of radius
increment dominates over the effect of number density decrement
during coarsening. This is also visible by a rapid increase in the
volume fraction evolution, Fig. 5(c), in the first 10 h. The approxi-
mately constant volume fraction of y’ is located inside the region of
coarsening, where a yield strength reduction is observed.

Fig. 3 gives a clear indication of the relation between solid
solution strengthening and precipitate evolution from nucleation
and growth to coarsening. The yield strength due to constitutional
alloying elements of v/, such as Nb, Ti and Al, decreases at early
aging time up to 10 h. Afterwards, the concentration of each
alloying element in the matrix becomes almost constant and, thus,
also the solid solution strengthening effect.

Fig. 6(f) summarizes our computed total yield strength evolu-
tion, oy, in 718Plus compared with results from compression tests,
as well as the simulated contribution of individual strengthening
contributions from intrinsic strength and grain size effect, solid
solution strengthening and precipitation strengthening during
isothermal aging at 788 °C. The grain size and intrinsic effects

are practically constant because the grain size is unchanged during
aging. The predicted decreased solid solution strengthening during
aging is by far compensated by the amount of precipitation
strengthening, which provides more than 65% of the total yield
strength at peak strength.

6. Conclusion

Within a comprehensive computational framework for the
evolution of precipitates during thermo-mechanical treatment,
we demonstrate that the yield strength of the Ni-base superalloy
Allvac 718Plus can be accurately predicted over the entire heat
treatment cycle. The coupling of yield strength simulation with
thermo-kinetic computation of the precipitate evolution shows
that precipitation strengthening increases significantly with the
volume fraction increase of y’ precipitates. At peak strength, the
phase fraction of y/ becomes almost constant. Precipitate coarsen-
ing during prolonged aging at 788 °C has a negative effect on the
final yield strength. The yield strength simulation, which is based
on physical modeling and thermo-kinetic precipitation simulation,
suggests that before 10 h aging, the operative strengthening
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Table 3
Strengthening parameters used in the precipitation hardening simulation.

Parameters Values Comments

M (Taylor factor) 2.6 From Ref. [39]

G (GPa) 80.1 From Ref. [41]

Gp (GPa) 778 From Ref. [8]

yaps (J M™2) 0.111 From Ref. [42]

7ne (Jm~2) 0.135-0.16" MatCalc thermodynamic database
) 0.004 Measured

b (nm) 0.254

v 0.33

Ti 2b

2 The interfacial energy is composition- and temperature-dependent.

mechanism in 718Plus is shearing. Afterwards, the strengthening
is provided by the non-shearing mechanism. The dominant
shearing mechanisms are the anti-phase boundary and coherency
effects, which have the highest impact on the final yield strength
in 718Plus.
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