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Abstract 

 

This work presents a model to describe the recrystallization behavior of metallic materials. 

A physical model describing the process of recrystallization in terms of nucleation and 

growth is developed. The nucleation of recrystallization is calculated using models for 

subgrain evolution, dislocation kinetics and geometrical topological aspects. The growth is 

modeled with the help of driving pressures and grain boundary mobilities. The important 

influence factors on recrystallization such as temperature, strain rate, strain, composition of 

the material and initial grain size are described consistently by the model presented. The 

interactions of the generated recrystallization model with the precipitation kinetics, which 

are broadly represented by the thermokinetic software tool MatCalc, are particularly 

noteworthy. With the help of this interaction, recrystallization stop temperatures can be 

precisely described by interactions between grain boundaries and precipitates. With the help 

of a sophisticated physical approach to grain boundary mobility, which describes both the 

influences of precipitates and dissolved atoms, technical alloys in their microstructure 

evolution can also be represented within the developed model with a single set of input 

parameters. The results of the model are compared with numerous experiments from  

literature, whereby an excellent agreement between simulation and experiment can be 

observed. 

 

  



IV 

 

 

Kurzfassung 

 

In der vorliegenden Arbeit wird ein Modell zur Beschreibung des Rekristallisations-

verhaltens von metallischen Werkstoffen vorgestellt. Dabei wird ein physikalisches Modell, 

welches den Vorgang der Rekristallisation in Begrifflichkeiten der Nukleation und des 

Wachstums beschreibt, entwickelt. Die Nukleation der Rekristallisation wird mit Hilfe der 

Subkornevolution, Versetzungskinetik und unter geometrisch-topologischen Aspekten 

berechnet. Das Wachstum wird mit Hilfe von Treibkräften und Korngrenzenmobilitäten 

modelliert. Die wichtigen Einflüsse auf die Rekristallisation wie die Temperatur, die 

Dehnrate, die Dehnung, die Zusammensetzung des Materials sowie die Anfangskorngröße 

werden von dem vorgestellten Modell in logischer Art und Weise beschrieben. Besonders 

hervorzuheben sind die Wechselwirkungen des erstellten Rekristallisationsmodells mit der 

Ausscheidungskinetik, welche durch das thermokinetische Softwaretool MatCalc 

bereitgestellt wird. Durch diese Interaktion lassen sich Rekristallisationsstoptemperaturen 

durch Wechselwirkungen zwischen Korngrenzen und Ausscheidungen genau beschreiben. 

Mit Hilfe eines ausgeklügelten physikalischen Ansatzes für die Korngrenzenmobilitäten, 

welcher sowohl die Einflüsse der Ausscheidungen als auch die Einflüsse der gelösten Atome 

beschreibt, können auch technische Legierungen in ihrer Mikrostrukturevolution mit einem 

unveränderten Set an Inputparametern des vorgestellten Modell abgebildet werden. Die 

Ergebnisse des Modells werden mit zahlreichen Experimenten aus der Literatur verglichen, 

wobei eine exzellente Übereinstimmung zwischen den Simulationen und Experimenten 

festgestellt werden kann. 
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1. Introduction 

 

Although metalworking at elevated temperatures has been practiced for thousands of years, 

only in the last century, scientific progress has been made in detailed understanding of the 

metal-physical processes involved. Carpenter and Elam [1] were the first to distinguish the 

process of recrystallization from grain growth. Thereby, they developed the theory that the 

driving pressure for recrystallization stems up from the excess dislocations introduced by 

deformation, whose theory is valid until today. The grain boundaries moving during 

recrystallization grow at a rate directly proportional to this driving force. Zener [2] described 

in his work that the rate of growth of processes involving grain boundary motion (grain 

growth and recrystallization) can be highly dependent on the number density and size of 

precipitates present in the system. The experiments on static recrystallization in austenite by 

Medina et al [3] show that recrystallization can be severely hindered when precipitates 

interact with grain boundary motion. In addition to the Zener effect, impurities as well as 

alloying elements also influence the growth rate of grains, which has for instance been 

measured for Al-Mg alloys during grain growth and recrystallization [4]. In addition to the 

Zener drag and the Solute drag [5], which determine the compositional influence on the 

recrystallization behavior, other factors such as the degree of deformation, the strain rate, 

the temperature and the initial grain size exert considerable influence on the recrystallization 

behavior [6]. Numerous models already exist in literature [7–9] describing the 

recrystallization behavior as a function of these influencing factors. Nonetheless, most 

models rely on phenomenological assumptions or require a variety of fitting parameters that 

limit the predictive capability of these model to individual alloys. 

 

This thesis is divided into two sections. The first section (Section A) contains an 

overview of the models developed and used during the dissertation and the accompanying 

explanations. First, the models for precipitation kinetics and microstructure development are 

discussed. Upon this, the results of the overall model are explained. The second section 

contains five scientific papers that constitute the major part of this work. The simulations in 

comparison to experimental results as well as the input parameters for the models are 

explained in detail in these papers.  
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2. Modelling Precipitation Kinetics  

 

Since the microstructure kinetics can be strongly influenced by precipitates [2] and this 

effect is taken into account in this work, the most important evolution equations for the 

modeling of precipitation kinetics are explained in this chapter. 

The occurrence of precipitation can basically be divided into three parts: Nucleation, 

growth and coarsening. The nucleation of precipitates is modelled in accordance to the 

classical nucleation theory, which is extended for multi-component systems. The transient 

rate of nucleation, J , which describes the creation of stable nuclei per unit volume and time, 

t , can be expressed as follows: 

*
* exp exp

B

G
J NZ

k T t


       

  
.      ( 1 ) 

The transient nucleation rate is mainly determined by the critical Gibbs energy for nucleus 

formation, *G , the number of potential nucleation sites, N , the atomic attachment rate,       

* , the Zeldovich factor, Z , the Boltzmann-constant, Bk , the temperature, T , and the 

incubation time.  . The critical Gibbs energy for nucleus formation is mainly evaluated by 

the balance of the volume free energy, volG , and the interface energy of the nucleus,  . 

Differentiating this relation with respect to the nucleus size for a spherical nucleus and 

equating to zero delivers: 

 

3
*

2

vol s

16

3
G

G G




  
.       ( 2 ) 

Thereby the strain energy, sG , considers the volumetric misfit between the precipitate and 

the matrix and increases the critical energy for nucleus forming. The calculation of the 

number of potential nucleation sites depends on the place of nucleus formation. In this work, 

a differentiation of nucleation sites between grain boundaries, GBN , and dislocations, DisN

, are taken into account. 

DisN
a


          ( 3 ) 

GB
GB 2

A
N

a
          ( 4 ) 

The nucleation site contribution of dislocations is dependent on the actual dislocation 

density,  , and the nucleation site density of grain boundaries on the total grain boundary 

surface, GBA , respectively [10]. 
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The atomic attachment rate describes long-range diffusion of the precipitate forming 

elements through the matrix. For a multicomponent system, it is given by Svoboda et al. [11] 

as 

1*2 2
* 0

4
1 0 0

4 ( )

( )

n
ki i

i i i

r c c

a c D






 
    

 .      ( 5 ) 

The extent of the atomic attachment rate ascends with the critical radius, *r , the 

concentration of the element n in the matrix, 0ic , and the diffusion coefficient of the element 

in the matrix, 0iD . It decreases with the molar volume,  , and quadratically with a lower 

gap between the concentration of the element in the precipitate, kic .  

The Zeldovich factor accounts for the probability of a nucleus to decompose at the 

point of critical nucleus size. The probability of a thermally excited critical nucleus with the 

energy, Bk T , at this condition is fifty percent. With increasing size, this probability 

decreases. According to Zeldovich [12] and Russel [13], the nucleation rate should include 

the Zeldovich factor as: 

*
at

1

22 *

2
at

1

2 B n

G
Z

k T n

          
,      ( 6 ) 

where atn  is the number of atoms in the nucleus.   

The incubation time, τ, relates the transient nucleation rate with the steady state nucleation 

rate. Thereby, this value is also dependent on the Zeldovich factor and the atomic attachment 

rate [14,15]. 

  1* 22 Z 


          ( 7 ) 

After nucleation, the further growth and coarsening is modelled in accordance to Svoboda 

et al. [11], which includes the radius, r , and the composition of the precipitate: 

  
 











n

i

m

k

m

k
kk

n

i
kikik

k
ii rc

r
NG

1 1

2

1

3

00 4
3

4



 .   ( 8 ) 

This mean field approach expresses the driving pressure for the growth and coarsening in 

terms of the Gibbs energy, G ,in dependence of different components, precipitates, m, 

concentrations, chemical potentials,  , interfacial energies and specific mechanical 

energies, λ. The Gibbs energy in the precipitate system is here the sum of three contributions: 

The Gibbs energy contributions of the matrix, of the precipitates and of the total precipitate-

matrix interface in the system. During precipitation, three possibilities of free energy 
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dissipation are taken into account: Dissipation by interface migration, by diffusion inside the 

precipitates and by diffusion in the matrix. The integration of the kinetic parameters are 

performed by means of the software tool MatCalc and are based on the Kampmann-Wagner 

approach, which has been described in detail elsewhere [16]. 

The diffusion of the precipitate-forming elements in the bulk and at defects, such as 

grain boundaries and dislocations, have a deep impact on the precipitate evolution. In a 

recent contribution, Stechauner and Kozeschnik [17] reviewed self-diffusion coefficients 

along defects in Fe, Al and Ni for both at grain boundaries and at dislocations, where 

precipitates are preferentially located. To approximate the defect-effected diffusion for other 

elements, a ratio to bulk diffusion can be calculated and then multiplied with the 

corresponding bulk diffusion cefficient of the precipitate forming element. Figure 1 

exemplarily shows the self-diffusion values of Al elaborated by Stechauner and Kozeschnik. 

 

Figure 1: Self diffusion coefficients at defects in Al [17] 

Due to its cubic influence on the nucleation barrier, the interfacial energy has also a critical 

impact on the precipitation kinetics and can be calculated in an analytical approach 

independently from crystal structure and interface orientation by the approach of 

Sonderegger and Kozeschnik [18]: 

S S,eff
C Sol

A L,eff

( ) ( / )
n z

r T T H
N z

  
 

     
 

,     ( 9 ) 

with the number of atoms per surface area, Sn , the effective number of broken bonds at the 

interface, S,effz , the Avogadro’s number, AN , the effective coordination number, L,effz  and 
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the solution enthalpy, SolH . The latter can directly be linked to the thermodynamic 

properties of the system and is thus a function of the chemical composition and the 

temperature. The curvature effect of the phase boundary is modelled in accordance to the 

approach of [19] and is captured with the function, ( )r . In addition, the entropic 

contribution of the diffuse interface, C( / )T T , is adopted from ref. [20] and links the diffuse 

interface effect to a regular solution critical temperature, CT . Principal results of the 

precipitation model are shown in chapter 4 and in section B of this thesis. 
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3. A New Model for Static Recrystallization 

 

Recrystallization is a process that takes place via the elementary mechanisms of nucleation 

and growth [21]. Thereby, the excess dislocation energy is reduced by the formation of a 

new defect-poor microstructure. As part of my work on this subject, it has proved useful to 

describe the overall model in three steps:  

(i)  The transformation of the microstructure comprises the nucleation and growth 

of the new grains. The basic kinetic model is developed here.  

(ii) The physical description of important parameters required by the kinetic 

model (i) for the correct calculation of recrystallization mainly includes a concise 

description of the grain boundary mobility and the driving forces for 

recrystallization. In this step, the important input parameters are formulated in 

such a general way that they can be used in several materials. 

(iii) The application of the model to a particular material or a group of materials 

shows the predictive force and validity of the equations developed under (i) and 

(ii). 

The basic kinetic model and the physical description of the most important input parameters 

(grain boundary mobilities and driving pressures) are explained in this chapter 

(subsequently). The application of the model with certain experiments is shown in the 

following chapter and in the papers attached (section B). 
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3.1  The Kinetic Model for Recrystallization 

 

In their prominent work, Bailey and Hirsch [22] experimentally observed the nucleation 

mechanism for recrystallization, which is described as strain induced boundary migration 

(SIBM). A nucleation event becomes possible, when a subgrain being in contact with a high-

angle grain boundary exceeds a critical size,r
crit

, which is, according to Bailey and Hirsch, 

given by the quotient of the surface energy of the high-angle grain boundary (HAGB),      

HB , and the driving pressure, DP ,  

r
crit
(t)

2
HB

P
D
(t)


2

HB

0.5Gb(t)
,       ( 10 ) 

with the Burgers vector, b, the radius of the subgrain, r, the total dislocation density,  , and 

the shear modulus, G. Figure 2 shows the model of the nucleation of recrystallization within 

the Bailey Hirsch mechanism. In the Bailey-Hirsch approach, only the subgrains located at 

the grain boundary can develop into a high angle grain boundary. 

 

Figure 2:  Schematic illustration of a subgrain growing (left) and once it reaches the 

critical size (right) bulging into the deformed matrix as a new strain-free grain 

[23]. 

The nucleation rate, rxN , is formulated as function of the number density of potential 

nucleation sites, potN , a site saturation factor, nucB , and the flux of subgrains obtaining 

supercritical size, subF , as 

.        ( 11 ) 

The three components of the nucleation rate and their determination are explained below: 
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(i) : Pantleon and Hansen [24] experimentally observed that the subgrains are 

distributed in a Rayleigh distribution . The fraction of subgrains, which are exceeding 

a critical size, can then be described as 







  )(

4
exp)( 2

critsub ttF


,       ( 12 ) 

where crit  is the critical subgrain size divided by the mean subgrain size. A 

differentiation with respect to time delivers 

critcritsub )(
2

1
XXtFF   .       ( 13 ) 

Thereby, the normalized critical subgrain size, critX , can be computed by means of the 

critical subgrain size and the mean subgrain size, meanr , as 

)(

)(
)(

mean

crit
crit tr

tr
tX  ,        ( 14 ) 

and 

2
mean

meancrit

mean

crit
Crit

r

rr

r

r
X

  .       ( 15 ) 

Figure 3 qualitatively illustrates the effect of the concept developed above on the 

modeled nucleation of recrystallization. The shaded area shows the proportion of the 

total population of subgrains, which become stable recrystallization nuclei in the 

course of the progressing subgrain growth process or the increasing value of the stored 

energy.  

 

Figure 3: Portion of subgrains reaching supercritical size from the total 

population during nucleation of recrystallization [23]. 
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(ii) potN : The potential nucleation sites can be calculated from the quotient of the 

specific grain boundary area, ava , per unit volume of material and the area covered by 

a single critical subgrain being located at the high angle grain boundary. Zhu et al. [25] 

developed, on a mathematical basis, a term describing the effect of different 

deformation modes (plane strain compression, axisymmetric compression and 

axisymmetric tensile deformation) on the specific grain boundary area. We adopt the 

results of Zhu et al. in the present work and account for these with the function, f , 

depending on the deformation strain,  . The function calculates the relative 

enlargement of the specific surface area caused by deformation. The total number of 

potential nucleation sites, Npot , can then be formulated as, 

 


f
r

a
N pot 2

crit

av .        ( 16 ) 

Just as in the publication by Zhu et al., we describe the shape of one individual grain 

as a truncated octahedron (tetrakaidecahedron). The total available grain boundary 

area of all grains can then be described with the mean grain radius, R, the number 

density of the original grains, 0N , and the surface area of one grain, HAGS : 

 
   2

3HAG0av 5.13126
5.128

1
5.05.0 R

R
SNa 








 .   ( 17 ) 

(iii) nucB : With increasing density of newly recrystallized grains, the possible locations 

for new nuclei are occupied by the already recrystallized microstructure. The following 

term computes the fraction of grain boundary area left for further nucleation as: 

 
av

2
critrx

Nuc 1
a

rN
B


 .       ( 18 ) 

As shown in the equations developed above, the subgrain evolution is highly important for 

the nucleation of recrystallization. The subgrain growth can be divided into two parts: a part 

that describes the growth due to curvature, , and a part that describes shrinkage during 

deformation, . 

  GSmean rrr   .        ( 19 ) 

The shrinkage of the subgrain size due to deformation is known in literature as the 

"similitude" principle, which has been introduced by Nes [26] and Estrin [27]. Both authors 
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formulate an empirical equation describing the subgrain size via the inverse of dislocation 

density: 

,        ( 20 ) 

with the material constant, SimK . 

The growth of the subgrains can be described by the curvature approach, which is 

observed and simulated by many authors [28–30] in independent experiments. Within such 

an approach, the growth rate of the subgrain is described using the product of subgrain 

mobility, eff,LBM , and the driving pressure for subgrain growth, D,SGGP : 

SGGD,LBeff, PMrG  .        ( 21 ) 

According to a recent contribution by Brechet et al. [31], the driving pressure can be 

calculated by taking into account the repelling pressure of dislocations due to the internal 

dislocation density, 
int
   

RS
, where RS  is the wall dislocation density: 

int

mean

2

mean
SGGD,

2

2 



r

Gb

r
P LB  ,      ( 22 ) 

with the interaction width of the low-angle grain boundary (LAGB),  , and the subgrain 

boundary energy, LB . The models for the calculation of the single dislocation density 

populations are presented in chapter 3.2. The evolution of the important input quantity of the 

subgrain mobility, which includes the influences of solute drag and Zener drag, is explained 

in the following subchapter. The approach described above can be used to describe the 

nucleation of recrystallization. The growth of these new grains is described in the following. 

The newly formed high-angle grains grow into the deformed microstructure with a 

driving pressure (generated from the increased dislocation density), PD, and an effective 

grain boundary mobility, HBeff,M , [32].  

The growth rate, , decreases with increasing recrystallization, as less deformed 

microstructure remains in which the new grains could grow. Therefore, we scale the growth 

equation with the recrystallized volume fraction, rxX : 

)1( rxDHBeff,rx XPMR  .       ( 23 ) 
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The recrystallized volume fraction, ( ), can be calculated using the nucleation rate and 

the growth rate developed above. Assuming that the grains have the shape of a truncated 

octahedron (tetrakaidecahedron), the evolution equation is formulated as follows: 

 
tot

rx
rx

2
rxrxrx

3
rxrx 3227

V

V
RRNNRX

  .     ( 24 ) 

It should be noted that the driving pressure and mobility play a central role in both, 

nucleation and growth, of recrystallized grains. In nucleation, the development of the driving 

pressure determines the size of the critical nucleation radius. The growth equation above 

shows that both, mobility and driving force, equally control growth. Due to the importance 

of these two parameters, their development is described separately in chapter 4.2. 
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3.2  Mobilities and Driving Pressures 

 

In the previous chapter, the kinetic model for recrystallization has been described. The result 

of the model reacts very sensitively to the important state parameters. The most important 

ones, which are used in most of the works from literature as fitting parameters, are, in this 

context, the grain boundary mobility and the driving pressure. In the following part, physical 

models for the calculation of these quantities are presented and developed. 

Unlike other approaches, the solute drag and Zener drag effects are included in the 

grain boundary mobility. First, we examine the grain boundary mobility of a pure material 

without taking into account precipitation effects and foreign atom influences. Turnbull [33] 

was the first to model the temperature dependence of grain boundary mobility using self-

diffusion at the grain boundary, GBD :  

RTb

VD
MM

2
mGB

HBfree,TBHBfree,HBfree;

  ,     ( 25 ) 

with the grain boundary width,  , the efficiency factor, HBfree, , the Turnbull mobility, TBM

, the ideal gas constant, R , the molar volume, mV , and the temperature, T . Similar 

approaches have been presented by other authors [34,35] but all have in common that the 

temperature dependence of the mobility is mainly given by temperature dependence of the 

grain boundary diffusion coefficient.  

In order to calculate the influence of precipitation on the (sub)grain boundary 

movement, we use the expression developed by Zener [2] for the retarding pressure, ZP , due 

to precipitation and extend it for different size classes, i, and precipitate types, k: 


i k ik

ik

r

f
ikP

,

,
HBZ 2

3
),(  ,       ( 26 ) 

with ,k ir  being the mean precipitate radius and ,k if being the precipitated phase fraction. At 

this point, the model for microstructure development is linked to the precipitation model (see 

chapter 3) in MatCalc. Within the MatCalc model for precipitation evolution, the precipitate 

radii and phase fractions required for the Zener pressure are calculated. 

In contrast to many other approaches [8,36,37], we include the Zener pressure into the grain 

boundary mobility and not into the driving pressure. We formulate a precipitate affected 

mobility, prec,HBM , by means of the ratio of the driving force and the Zener force [32]: 
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D Z D Z
free,HB pinned,HB D Z
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pinned,HB D Z

1 ,

,
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P PM

M P P

    
         

 

.  ( 27 ) 

The advantage of this procedure is that the velocity of grain boundary movement never 

becomes zero, even in cases where the Zener pressure is larger than the driving pressure for 

recrystallization, but is only severely slowed down to the value of the pinned mobility, 

pinned,HBM , which has been observed experimentally in many contributions e.g. [38,39]. If 

the precipitates bring the grain boundary to a stop, the precipitates, which are present at the 

grain boundary, can coarsen faster due to the high-velocity diffusion conditions there, which 

leads to a local reduction of the Zener pressure since the phase fraction remains equal, the 

radii become larger and the number density of precipitates reduces. As a result, the grain 

boundary can continue to progress locally even if the mean Zener pressure of the deformed 

microstructure is larger than the driving pressure. Figure 4 illustrates this process. 

 

Figure 4: High angle boundary passing through a precipitate enriched matrix [32] 

In addition to precipitation, atoms also exert an influence on grain boundary motion, which 

is known in literature as the solute drag effect [5,40]. In this work it is modeled on the basis 

of the prominent work of Cahn [5]. According to Cahn, the dragging effect of solute atoms 

should be incorporated into the mobility term with 



14 

 

GB
SD

1

C
M


 ,        ( 28 ) 

where, SDM is the solute drag-affected grain boundary mobility ,   is an inverse mobility 

including the trapping effect of the solute drag exerting element and GBC  is the concentration 

of the considered element at the grain boundary. The inverse mobility determines the 

temperature dependence with the cross boundary diffusion, CBD , and the interaction energy, 

BE , and is given as: 

 























RT

E

RT

E

VDE

RT BB

MCBB

2

sinh
 .     ( 29 ) 

It should be mentioned that the analyses on the solute drag of Cahn [5] go further than the 

technically relevant equations described here. Cahn distinguishes in his work a so-called 

"fast branch" from a "slow branch" depending on the concentration of the element exerting 

the solute drag and the driving force for moving the grain boundary. Analyses by Rehman 

and Zurob [7] and by Cram et al. [41] in various materials have shown that, during 

recrystallization, modelling can only be carried out with the aid of the slow branch. Within 

the framework of this work, only the "slow branch" is considered.  

The total mobility approach, which includes both the influences of the precipitates 

and those of the solutes, can be summarized as follows: 

1

eff,HB
prec,HB SD

1 1
M

M M


 

   
 

.      ( 30 ) 

The above approach automatically determines the resulting grain boundary mobility 

depending on the precipitation and solute state. Figure 5 shows a sketch of the presented 

mobility approach. 
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Figure 5: Mobility-chart for a V- alloyed austenite before precipitation [42] 

The free mobility is a fraction of the Turnbull mobility. Since the coarsening of grain 

boundary precipitates has the same temperature dependence as the free mobility [43] the 

pinned mobility is also considered as a fraction of the Turnbull mobility. The effective grain 

boundary mobility is calculated from free mobility and solute drag mobility if no precipitates 

are yet present. When precipitates are formed, the effective mobility moves in the direction 

of the pinned mobility depending on the amount of driving pressure and Zener pressure. 

The subgrain growth is based on dislocation climb, according to Winning [44] and 

Sandstrom [45]. Therefore, Sandstrom [45] formulates a mobility approach for subgrains, 

which calculates the temperature dependence of the subgrain mobility of a pure material 

using bulk diffusion, BD : 

Tk

bD
MM

B

2
B

LBfree,SSLBfree,LBfree;   ,     ( 31 ) 

with the Sandstrom mobility, SSM , and the Boltzmann constant, Bk . Just as in the above-

described Turnbull approach for the high angle boundaries, a linear adjustment parameter is 

required, which does not change the temperature-dependence of the mobility. In their 

simulative studies, Zurob and co-workers [23,46] observe that subgrain growth can strongly 

depend on the solute content. Jones and Hansen [47] experimentally confirmed that second 

phase particles also prevent subgrain boundaries from growing. This means that both effects, 

which are also observed in the case of high angle grain boundaries, are also present during 

subgrain growth. To include these effects in the subgrain growth, we transfer the retarding 

effect of both mechanisms from the mobility system of the high angle grain boundaries to 

that of the small angle grain boundaries as: 
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The dislocation density evolution is developed within an extended Kocks-Mecking model 

[48], which accounts for dislocation generation, dynamic recovery and static recovery. 

Buken and Kozeschnik [42] presented an approach based on the original model by Sherstnev 

et al. [49], which includes the effect of geometrically necessary dislocations:  

)(22 2
RS

2
3

Dis
ann 


 

Tk

Gb
CDM

b

d
B

Ab

M

B

 ,   ( 33 ) 

with the critical dislocation annihilation distance, dann, the Taylor factor, M, the strain rate, 

, the substitutional self-diffusion coefficient at dislocations, DDis, and material-dependent 

coefficients A, B, C. The geometrically necessary dislocation density can be computed by 

means of the Read-Shockley model [50] as 

 
mean

mean
RS

tan

br

  ,        ( 34 ) 

with the mean subgrain misorientation angle, mean . 

The models described above for the most important state parameters of the 

recrystallization model (boundary mobilities and dislocation densities) can be used to predict 

the recrystallization behavior of a wide variety of materials. In the last two subchapters, the 

functionality of the model was outlined. Finally, Figure 6 describes, how the important 

influencing parameters of recrystallization (composition, grain size, deformation rate, strain 

and temperature) affect the entire model. 

 

 

Figure 6: Simplified mapping of the effect of material and heat treatment parameters 
on the recrystallization model  



17 

 

4. Static Recrystallization in Microalloyed Steels and Al-Mg 

Alloys 

 

In this chapter, the most important final parameters for the recrystallization model for both, 

microalloyed steel in the austenite condition and Al alloys, are explained. In particular, the 

input parameters of the models for driving pressures and mobilities presented in chapter 4.2. 

Short application examples of the model are also given but the main demonstration of the 

functionality is given in the attached papers.  

The diffusion values (also at defects like grain boundaries and dislocations) play a 

major role both in recrystallization (mobility and recovery) and in the precipitation kinetics. 

Therefore, a reliable source for these values is extremely important to generate a simulation 

success. In a new review publication, Stechauner and Kozeschnik [17] have reviewed these 

values which are used in this work. 

The grain boundary mobilities in a pure material are determined with the aid of grain 

growth tests. A temperature-dependent mobility is determined with a known driving force, 

which results from the potential of the reduction of the total surface energy and the measured 

grain sizes [51]. Huang and Humphreys performed grain growth experiments in pure 

Aluminum and different Al-Mg alloys. Applying the Turnbull approach for the free mobility 

delivers a linear prefactor for the free mobility for pure Al of free,HB(Al) 0.4  . Zhou and 

Zurob [52] measured the grain size evolution during grain growth in C-Mn steels in the 

austenitic range. The Turnbull approach covers the measured grain boundary mobility with 

a linear prefactor of free,HB(Fe ) 0.0075  .  

The solute drag effect is included in the mobilities on basis of the Cahn model. This 

model requires the definition of a binding energy for each solute drag-exerting element, 

which segregates into the grain boundary, and a cross boundary diffusion coefficient, i.e. the 

diffusion coefficient for the crossing of the grain boundary. In their simulations with that 

model, Rehman and Zurob [7] and Buken and Kozeschnik [42] determined the cross 

boundary diffusion coefficient as approximately two times that of the bulk diffusion 

coefficient, CB B2D D . In case of Al-Mg alloys, numerous grain growth experiments exist, 

which allows for a straightforward adjustment of the binding energy such that the calculated 

energies fit the measured solute drag containing grain boundary mobilities. Applying the 

Cahn model to the measured mobilities of Huang and Humphreys [4] delivers a trapping 
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energy between Al-grain boundaries and Mg-atoms of B, Mg 5 /E kJ mol . Figure 7 shows 

the calculated mobilities in comparison to the experimentally observed ones. 

 

 

Figure 7: Calculated (lines) and measured (markers) mobilities for Al-Mg alloys [53] 

Within the scope of the present work, the solute drag impact of the common micro-alloying 

elements (Nb, Ti, and V) in austenite have been analyzed. The binding energy for the Cahn 

model of Nb could be taken directly from the literature [7], which is given with 

B, Nb 2 /E kJ mol . The trapping energy of V has been analyzed in the work of Buken and 

Kozeschnik [42], which delivered a value of B,V 2 /E kJ mol . In their contribution, Andrade 

et al. [54] stated that the strength of the solute drag effect of Ti lies in between V and Nb. 

Buken et al. [55] confirmed that by simulation analysis where a trapping energy for Ti 

B,Ti 10 /E kJ mol  delivers plausible recrystallization kinetics in comparison to independent 

experiments.  

The parameters for the development of the dislocation density (A, B, C) can be 

determined using experimentally observed flow curves. The Taylor approach can be used to 

model the proportion of strength through dislocation hardening together with the dislocation 

evolution equation presented in chapter 4.2. Figure 8 shows simulated flow curves (only the 

dislocation density fraction) and the corresponding dislocation densities for different Al-Mg 

alloys at room temperature.  
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Figure 8: a) simulated dislocation densities b) corresponding flow curves for different 
Al-Mg alloys [53] 

The presented (most important) input parameter for microalloyed austenite and Al-Mg alloys 

are summarized in Table 1 and Table 2. 

 

Table 1:  Parameters for recrystallization of Al- alloys 

Symbol Value Unit Ref. 

BD  1.4×10-5 exp(-127200/RT) m²/s [17] 

DisD  1.5×10-6 exp(-83200/RT) m²/s [17] 

GBD  2.0×10-5 exp(-60200/RT) m²/s [17] 

CBD  B2D  m²/s [7,42] 

		A;B;C  -16,6�ln(CMg)+44.6; 2; 4×10-5 - [56] 

SimK  A  - [32] 

B,MgE  5000 J/mol [4] 

MgGB,C
 CMg mol/ mol [7,42] 

HB  0.65-0.0005×T[K] J/m³ [53] 

LB  HB5.0   J/m³ [32] 

  10-9 m [32,52] 

  50b m [53] 

mean  3° - [42] 

HBfree,
 0.4 - [4] 
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Table 2: Parameters for recrystallization of microalloyed steel 

Symbol Value Unit Ref. 

BD  7.0×10-5 exp(-286000/RT) m²/s [17] 

DisD  4.5×10-5 exp(-185000/RT) m²/s [17] 

GBD  5.5×10-5 exp(-145000/RT) m²/s [17] 

CBD  B2D  m²/s [7,42] 

A;B;C  50; 5; 5×10-5 - [32] 

SimK  A  - [32] 

B,NbE  20000 J/mol [7] 

B,TiE  10000 J/mol  

B,VE  2500 J/mol  

GB,(Nb,Ti,V)C  0,(Nb,Ti,V)C  mol/mol [7,42] 

HB  1.3111-0.0005×T[K] J/m³ [57] 

LB  HB5.0   J/m³ [32] 

  10-9 m [32,52] 

  50b m [53] 

mean  3° - [42] 

HBfree,
 0.0075 - [52] 

 

The application of the model and the parameters presented above allows a prediction of the 

recrystallization behavior of (i) microalloyed steel and (ii) Al-Mg alloys. 

(i) Figure 9 shows the recrystallized fraction of three V micro-alloyed steels 

experimentally determined by Medina. The V content increases from alloy V1 to 

alloy V3, resulting in an increase in the driving force for precipitation formation and, 

thus also in the Zener pressure in comparison, which leads to a reduction in the 

recrystallization plateau and slows down recrystallization. Figure 10 shows the 

associated TTP diagrams, showing that the changed precipitation kinetics from alloy 

V1 to alloy V3 are largely responsible for the difference in recrystallization behavior. 
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Figure 9:  Simulated vs. experimentally observed recrystallization kinetics for 
three different V micro-alloyed steel [42] 

 

 

Figure 10: Simulated TTP diagrams for V(C,N) precipitation  

 

(ii) Figure 11 shows the simulated recrystallization kinetics and experimentally 

determined data points of Koizumi et al. [58] on six different Al-Mg alloys with a 

tenfold increase in the Mg content. It is noticeable that the recrystallization rate 

decreases first and later increases with the increase in Mg content. This is due to two 

common effects: On the one hand, Mg increases the dislocation density, which occurs 

during the work hardening (see Figure 8) and, on the other hand, the grain boundary 

mobility is reduced by increasing solute drag effects (see Figure 7). Figure 12 

underlines the recrystallization response of both effects in comparison to 

experimentally measured values. 
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Figure 11: Calculated and experimental recrystallization kinetics at different 
temperatures for a) Al-0.5%Mg, b) Al-1%Mg, c) Al-2%Mg, d) Al-
3%Mg, e) Al-4%Mg and f) Al-5%Mg [53] 

 

 

Figure 12: a) Simulated recrystallization kinetics at 275°C for all considered 
alloys. b) Simulated 50% recrystallization temperature (markers) and 
experimental data from ref. [58] (line). 
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5. Summary and Conclusion 

 

As a result of this work, a new recrystallization model is presented, which describes 

recrystallization in terms of nucleation and growth on a physical basis. The nucleation is 

described by a distribution of subgrains, of which only those with a supercritical size 

nucleate. The growth of the nuclei is largely dependent on the dislocation density and grain 

boundary mobility. Models for both important influencing parameters are presented. The 

grain boundary mobilities are physically developed and include both the influences of solute 

drag and Zener drag. The latter can be calculated with the help of the precipitation 

development from the thermo-kinetic software tool MatCalc. To evaluate the quality of the 

overall model, input parameters for Al alloys and steel are calculated in a comprehensible 

way. The application of the model shows excellent agreement with experimental 

measurements within the material groups considered. 

 

The present model is capable of reproducing many experiments of different materials 

with a consistent set of parameters. This is only possible until the limits of the model are 

reached. Thus, this dissertation does not describe how dynamic recrystallization is modeled. 

The forming of new nuclei in newly formed nuclei cannot be mapped within a "single-class" 

approach, as described in the present thesis. Nevertheless, with the help of this work, the 

important physical processes during recrystallization including traceable input variables 

(mobilities) and driving pressures can be revealed. A potential multi-class model, which has 

a larger range of application, should also have the mechanisms and input variables described 

in this thesis.   
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In the present work, the influence of Mg on recrystallization kinetics in Al is analyzed by 

computer simulation. A comprehensive state parameter-based microstructure model is 

developed, which describes recrystallization in terms of nucleation and growth. The 

mechanism of solute drag is fully incorporated, thus accounting for the decrease of grain 

boundary mobility in the presence of impurity atoms. On basis of the present approach, 

the solute binding energy between Mg atoms and grain boundaries is assessed and 

compared to experimentally measured values. Furthermore, the influence of Mg on 

dislocation production during strain hardening is modeled. The simulations of the 

composition and temperature-dependent recrystallization kinetics are verified on 

experimental studies where excellent agreement is achieved. Both, simulation and 

experiment show that increasing Mg content first decelerates and, later on, accelerates 

recrystallization kinetics.    

 

Keywords: Recrystallization; Solute Drag; Microstructure Evolution; Strain hardening 

 

Introduction 

The proper control of microstructure evolution during processing of Mg-based aluminium 

alloys is a key factor for determining the final mechanical-technological properties of the 

material. Mg is a widely used element in Al-alloys, especially in the 5xxx and 6xxx series. 

On one hand, Mg segregates into grain boundaries and reduces the mobility of the moving 

boundary by several orders of magnitude in comparison to pure Al [1]. This so-called 

solute drag effect [2] is caused by solute atoms being dragged along with the moving 

grain boundary, thus excerting a restraining force against the movement of the grain 

boundary. As a result, microstructural processes involving the motion of high angle grain 

boundaries (HAGB) and low angle grain boundaries (LAGB) can be severely slowed 

down by the presence of impurity atoms [1,3]. On the other hand, an increased Mg content 
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promotes a higher strain-hardening rate, which, at identical strain, induces a higher 

dislocation density [4,5]. As a result, the driving pressure for recrystallization increases, 

thus accellerating the observed recrystallization kinetics. Koizumi et al. [6] have 

performed recrystallization experiments in Al-Mg alloys, observing that an increase of 

the Mg content first leads to a deceleration of the rate of recrystallization, followed by an 

acceleration at further increasing Mg content. These results will form the basis of 

experimental verification of the present model. 

In literature, several approaches are available describing recrystallization phenomena in 

metallic materials. With particular focus on Al alloys, earlier models [7,8] mostly utilize 

JMAK-based equations [9] for describing the kinetics of static recrystallization. In these 

models, several semi-empirical parameters are commonly utilized to adjust the simulated 

recrystallizing kinetics to experimentally measured recrystallized fractions. Since JMAK-

based models do not incorporate explicit mechanism-based descriptions for nucleation 

and growth of recrystallizing grains, they can only take limited account of basic physical 

phenomena, such as, the solute drag effect, precipitate-dislocation interactions in 

precipitation hardening alloys or the influence of impurities on dislocation generation 

during strain hardening.  

Recently, Zurob et al. [10,11] presented a physically-based model describing 

recrystallization with explicit expressions for nucleation and growth. In their work, the 

nucleation rate for recrystallization is evaluated from microstructural state parameters, 

such as, the subgrain size and the dislocation density, which, in combination with growth 

equations, delivers information on the recrystallized fraction within the deformed 

microstructure. The solute drag impact is included in the grain boundary mobility within 

the Cahn approach [2]. When applying the model to Al, however, Zurob et al. [10] utilized 

experimentally determined mobilities taken from literature instead of calculating 

composition-dependent mobilities based on physical relationships. Furthermore, this 

work does not take into account that the alloy composition has an important impact on 

the dislocation evolution during and after deformation. Consequently, no variation in the 

alloy composition of various Al alloys is elaborated in this work and recrystallization 

kinetics is evaluated only for a single Mg content of 1 wt%. 

In the present work, we develop a state parameter-based model in which all 

relevant microstructural parameters are numerically integrated forward in time. The 

evolution equations incorporate full composition and temperature dependence for grain 

boundary mobilities as well as dislocation generation during strain hardening. The 
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calculated grain boundary mobilities are compared to experimentally measured values to 

illustrate the predictive potential of our mobility approach. In addition, we develop 

relations by which we describe the driving pressure for recrystallization as a function of 

the Mg content through a composition-dependent dislocation generation term. The 

predictions of our recrystallization model are finally compared with experimentally 

measured values from literature. The entire model and input parameters are explained in 

detail subsequently.  

 

The recrystallization model 

2.1 Nucleation and growth 

The nucleation rate of newly formed recrystallized grains, rxN , is formulated as the 

product of the number density of potential nucleation sites, potN , a site saturation factor, 

nucB , which accounts for the grain area that is already covered by recrystallized grains 

and which is, therefore, no longer available for further nucleation, as well as the flux of 

subgrains reaching supercritical size, subF , as 

subnucpotrx FBNN   .         ( 1 ) 

Bailey and Hirsch [12] suggested that the main nucleation mechanism for 

recrystallization is given by the process of strain-induced boundary migration. This 

process is initiated when a subgrain being in contact with a high-angle grain boundary 

(HAGB) exceeds a critical size, r
crit

, determined by the quotient of the surface energy of 

the HAGB , HB , and the driving pressure, DP , as determined by the total dislocation 

density,  , with   

r
crit
(t)

2
HB

P
D
(t)


2

HB

0.5Gb(t)
,        ( 2 ) 

with the shear modulus, G, the Burgers vector, b, and r denoting the radius of the subgrain.  

The number density of potential nucleation sites can be calculated from the quotient of 

the specific grain boundary area, ava , per unit volume of material and the area covered 

by a single supercritical subgrain being located at the high angle grain boundary. The 

former is influenced by the degree of deformation of the grain, where the surface area 

increases with increasing strain. We map this process into our simulations using the 

analysis of Zhou et al. [13] who described the evolution of surface area of the grains 

during deformation in the form of a function, f , depending on the deformation strain, 
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. This function represents the ratio of the specific surface area of the deformed grain 

compared to that of the undeformed grain. The total number of potential nucleation sites, 

N
pot ,  then reads 

 


f
r

a
N pot 2

crit

av .         ( 3 ) 

To calculate the specific grain boundary area of one individual undeformed grain, we 

assume the grain to have the shape of a truncated octahedron (tetrakaidecahedron). The 

total available grain boundary area of all deformed grains can be formulated in 

dependence of the mean grain radius, R, the number density of the original grains, 0N , 

and the surface area of one grain, HAGS , as 

 
   2

3HAG0av 5.13126
5.128

1
5.05.0 R

R
SNa 








 .    ( 4 ) 

With the continuous production of new recrystallization nuclei, the deformed grain 

boundary surface continues to become occupied leading to a continuous decrease of the 

nucleation rate. In a first approximation, the following term is utilized to take this effect 

into account: 

 
av

2
critrx

Nuc 1
a

rN
B




.
        ( 5 ) 

To describe the distribution of subgrain sizes, we utilize a Rayleigh distribution as 

experimentally observed by Pantleon and Hansen [14] and also used in the model of 

Rehman and Zurob [11]. The fraction of subgrains, which are larger than the critical size, 

can then be expressed as 







  )(

4
exp)( 2

critsub ttF


,        ( 6 )  

where crit  is the critical subgrain size normalized with respect to the mean subgrain size. 

The fraction of subgrains, which become supercritical and serve as new stable 

recrystallization nuclei, is found after differentiation with respect to time as 

critcritsub )(
2

1
XXtFF   .        ( 7 ) 

The normalized critical subgrain size and its derivative, critX , are calculated in 

dependence of the actual mean subgrain size, meanr , and the critical subgrain size, as 

)(

)(
)(

mean

crit
crit tr

tr
tX           ( 8 ) 
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and 

2
mean

meancrit

mean

crit
Crit

r

rr

r

r
X

  .        ( 9 ) 

Successfully nucleated recrystallized grains grow into the deformed grains by dissipation 

of the stored deformation energy. We model this process by formulating a growth rate, 

rxR , as the product of a driving pressure, PD, (identical to the one in eq. (2)) and an 

effective high-angle grain boundary mobility, HBeff,M , [15] with 

)1( rxDHBeff,rx XPMR  .        ( 10 ) 

The growth rate is scaled with the recrystallized volume fraction, rxX , in order to account 

for hard impingement of the recrystallized grains.  

Since the driving pressure for nucelation and growth of recrystallized grains is 

provided by the stored deformation energy, i.e., the dislocation density, this quantity and 

its evolution as function of temperature, strain rate and chemical composition of the alloy 

play a central role in modeling recrystallization kinetics. This is equally true for the 

growth rate of recrystallized grains, eq. (10), as well as the nucleation rate as defined in 

eqs. (1) and (2). Consequently, particular emphasis of the present work has been directed 

into accurate modeling of this microstructural state parameter. 

The evolution of the dislocation density is described by means of an extended Kocks-

Mecking model [16] considering the processes of dislocation generation as well as 

dynamic and static recovery. In this context, we closely follow the approach introduced 

by Sherstnev et al. [17], describing the rate of the total dislocation density evolution as  

)(22 2
RS

2
3

Dis
ann 


 

Tk

Gb
CDM

b

d
B

Ab

M

B

 ,    ( 11 ) 

with the Taylor factor, M, the critical dislocation annihilation distance, dann, the 

substitutional self-diffusion coefficient at dislocations, DDis, the strain rate,  , and 

material-dependent coefficients A, B, C. In contrast to the original Sherstnev et al. model, 

where the driving force for static recovery is given by the difference of actual and 

equilibrium dislocation density, we introduce a limiting degree of static recovery, here, 

given by the amount of geometrically necessary dislocations, RS , for maintaining the 

subgrain microstructure. In the Read-Shockley model [18], the mean subgrain 

misorientation angle, mean , and the mean subgrain size in a periodic network of subgrains 

define the geometrically necessary dislocation density as  
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 
mean

mean
RS

tan

br

  .         ( 12 ) 

Finally, the individual pieces of information about nucleation density and growth rate can 

be combined to calculate the increase of the recrystallized volume fraction as 

 
tot

rx
rx

2
rxrxrx

3
rxrx 3227

V

V
RRNNRX

  .      ( 13 ) 

In evaluation of the grain volume of all recrystallized grains in the matrix, rxV , we again 

assume that the grain geometry can be approximated by a truncated octahedron. Since the 

model refers to unit volume of material, the total volume, totV , is 1m³.  

A major advantage of the present nucleation model is that it avoids the (extensive) 

use of fitting paramters in the form of activation energies. Instead, the essential 

temperature and composition-dependencies of the nucleation rate, eq. (1), are 

incorporated within the evolution equations for the mean subgrain size, meanr , as well as 

the composition and temperature-dependent evolution of the critical nucleation radius, 

r
crit

, eq. (2), which in turn is determined by the dislocation density evolution, eq. (11). 

The composition and temperature-dependency of the growth rate is also inherently 

incorporated in the high-angle grain boundary mobility, HBeff,M , as well as the driving 

pressure, DP . As a result, the present model utilizes only a minimum number of 

undetermined input parameters with most of the temperature dependence of physical 

quantities already being determined by the temperature dependence of independently 

measured quantities, such as the bulk and grain boundary self-diffusion coefficients as 

well as solute drag binding energies as obtained from application of the corresponding 

Cahn model [2]. 

 

2.2 Subgrain evolution 

As emphasized in the previous section, the nucleation rate for recrystallization is 

substantially determined by the evolution of the mean subgrain size in relation to the 

critical subgrain size for recrystallization nuclei. In the present approach, the evolution of 

mean subgrain size is formulated in differential form as superposition of a shrinkage term, 

, and a growth term, , with 

  GSmean rrr           

 ( 14 ) 
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A convenient parameterization of this general equation can be achieved with application 

of (i) the “principle of similutude”, as introduced by Estrin [19] and Nes [20] and (ii) the 

driving force – mobility concept, as already used to describe the growth rate of 

recrystallizing grains, eq. (10). The former relates the mean subgrain size with the average 

dislocation density in the deformed material and can be written in differential form as  

.         ( 15 ) 

In this (empirical) expression, K
sim

 represents a material-dependent shrinkage coefficient 

for the effect of dislocation storage on subgrain size evolution. Application of this relation 

has been investigated by Gil Sevillano [21] in several different groups of materials, where 

the viability of the principle of similitude has been confirmed repeatedly.  

In an investigation of the evolution of subgrains during annealing, Sandstrom [3] 

observed that the rate of subgrain growth is inversely proportional to the current subgrain 

size. Based on this work, Orsund and Nes [22] described the growth of subgrains in terms 

of mobility and driving pressure. Later, Huang and Humphreys [23] experimentally 

investigated subgrain growth in pure Al and also successfully applied a model that 

describes the growth rate via mobilities and driving pressures. We adopt this approach, 

here, for the subgrain growth rate as 

SGGD,LBeff, PMrG  ,         ( 16 ) 

with the effective LAGB mobility, LBeff,M , and the driving pressure for subgrain growth, 

SGGD,P .  

In conventional approaches to subgrain growth (e.g., refs. [3,22,23]), usually, only 

the interface curvature-dependent contribution to the driving pressure is considered. In a 

recent work, Brechet et al. [24] extend this approach and formulate an additional 

restraining pressure generated by the intrinsic dislocation density. The integral driving 

pressure for subgrain growth then reads 

int

mean

2

mean
SGGD,

2

2 



r

Gb

r
P LB  ,       ( 17 ) 

with the subgrain boundary energy, LB , the interaction width of the LAGB,  , and the 

internal dislocation density, 
int
   

RS
, describing the statistically distributed 

dislocations.  
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The subgrain boundary mobility, eq. (22) later, incorporates the temperature-dependence 

of the subgrain growth rate as well as the impact of impurity atoms, i.e. the solute drag 

effect. The parameterization of this quantity is outlined in the following section. 

 

2.2 Boundary mobility 

The grain and subgrain boundary mobilities are most important input parameters 

determining the recrystallization kinetics. To model the HAGB mobility, we use the same 

approach that has recently been successfully applied to recrystallization kinetics 

simulations in micro-alloyed steel [25] with  

1

SDHBfree,
HBeff,

11














MM
M ,       ( 18 ) 

where HBfree,M  is the mobility of the free undisturbed boundary and SDM  is the solute 

drag-affected mobility capturing the influence of impurity atoms. The former can be 

calculated from the work of Turnbull [26] as 

RTb

VD
MM

2
mGB

HBfree,TBHBfree,HBfree;

  ,      ( 19 ) 

with the efficiency factor, HBfree, , the grain boundary width,  , the grain boundary self-

diffusion coefficient, GBD , the molar volume, mV , the ideal gas constant, R , and the 

temperature, T . The diffusion coefficient along grain boundaries has been independently 

assessed recently by Stechauner and Kozeschnik [27] and their values are adopted, here. 

The efficiency factor for the free mobility is adjusted to the experimental data of [1] and 

delivers good results for 4.0free  .  

The effect of solute drag is accounted for on basis of the classical Cahn approach [2], 

where the solute drag mobility, MSD, is inversely proportional to the concentration of 

impurity atoms in the grain boundary, CGB, and an inverse mobility,  , as 

LBfree;
HBfree,

HBeff,
LBeff, M

M

M
M 










         ( 20 ) 

where BE , is the interaction energy between the solute drag-exerting element and the 

grain boundary and  CBD  is the diffusion coefficient across the grain boundary. The 

concentration of Mg in the HAGB is assumed to be identical to the matrix concentration 

[11,25]. If the Mg content in the alloy increases, the grain boundary mobility decreases 

due to the increasing amount of atoms that must be dragged along with the moving 
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boundary. In the limit of zero Mg, the calculated integral mobility approximates the free 

mobility since the solute drag mobility approaches infinity. Figure 1 compares the 

calculated grain boundary mobilities to experimental data, where fair agreement is 

achieved.  

 

 

Figure 1:  Calculated (solid lines) and experimental grain boundary mobility for Al-

5%Mg, Al-1%Mg, Al-0,1Mg% and high purity-Al (from Ref [1]) at 

different temperatures.  

 

Sandstrom [3] and Winning et al. [28] suggest that dislocation climb provides a viable 

mechanism for subgrain boundary movement. On this basis, Sandstrom [3], formulates a 

mobility approach where the subgrain boundary mobility, SSM , is mainly a function of 

the bulk diffusion coefficient, BD , which is applicable to pure alloys. We introduce a 

temperature-independent linear prefactor, LBfree, , which determines the value of the 

effective free boundary mobility as 

Tk

bD
MM

B

2
B

LBfree,SSLBfree,LBfree;         ( 21 ) 

with the Boltzmann constant, Bk . In their simulations, Rehman and Zurob [11,29] observe 

that the growth rate of subgrains is slowed down by dissolved atoms. Therefore, they 

introduce a model that correlates the rate of subgrain growth with the mean distance of 

solute atoms. Unfortunately, a separate parameter must be defined for each type of solute 

and obstacle, which is somehow decoupled from the parameters of the remaining 

simulation structure.  
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In contrast to the Rehman and Zurob approach, we interpret the influence of solute 

atoms on subgrain growth again as somehow proportional to the effect of solutes on grain 

boundary movement as delivered by the Cahn model [2]. Although not directly derived 

here on a physical basis, a subgrain boundary retardation factor is introduced, which is 

derived from the ratio of free and solute drag mobilities of the high-angle grain boundaries 

as 

M
eff,LB


M

eff,HB

M
free,HB









Mfree,LB

        ( 21 ) 

The major advantage of this approach is the fact that no additional independent calibration 

parameters must be introduced for the subgrain boundary mobility. The temperature-

dependence of the mobility is determined by the model of Sandstrom [3], whereas the 

composition-dependence of the subgrain boundary mobility is related to that of the high-

angle grain boundary. 

 

2.3 Verification experiments  

To verify the simulation, we analyze the work of Koizumi et al. [6] who experimentally 

investigate the recrystallization kinetics of five different Al-alloys with Mg matrix 

concentrations, CMg, of 0.5 wt%, 1 wt%, 2 wt%, 3 wt%, 4 wt% and 5 wt%. In their 

analysis, they first cast the alloys and measured a grain size of 300μm after pre-annealing 

at 450°C for 7 hours. Subsequently, cold reduction with a total strain of 0.95 is applied 

and the specimens are finally tempered at temperatures of 225, 250, 275 and 300°C. 

During tempering, the specimens are periodically extracted from a salt bath and analyzed 

metallographically in order to obtain the recrystallized fraction evolution. Since the aim 

of the present investigation is to model the influence of temperature and composition 

(solute drag and dislocation evolution accompanying strain hardening) on 

recrystallization kinetics, we only vary parameters (temperature and composition), which 

are important to these effects.  

 

2.4 Model input parameters  

The bulk and grain boundary diffusion coefficients entering the present model are taken 

from a recent analysis by Stechauner and Kozeschnik [27]. These values mainly 

determine the temperature-dependence of the free boundary mobilities and the static 

recovery kinetics of dislocations and subgrain boundaries. For the HAGB-energy, a value 

of 0.65-0.0005·T[K] is assumed, which incorporates the temperature-dependence of the 
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shear modulus as reported in ref. [30]. The resulting specific HAGB energy spans a range 

of 0.35 J/m²- 0.4 J/m² for the considered testing temperatures from 225°C- 300°C, which 

is well in line with the grain boundary energy value suggested by Murr [31].  

A similar Ansatz for determining the HAGB-energy was used by Zurob et al. [32] 

for austenite. The dislocation evolution parameters A, B, C are adjusted to the 

experimental flow curve measurements of Sherby et al. [4] by means of applying the 

Taylor equation [5] with a dislocation strengthening parameter of 0.2 [33]. Thereby, only 

the A-parameter is a function of the Mg-content in the system, capturing the influence of 

Mg on the dislocation evolution kinetics. Table 1 summarizes the input parameters for 

the simulation.  

 

Table 1: List of simulation parameters 

Symbol Designation Value Unit Ref. 

BD  
Al bulk diffusion 

coefficient 
1.4⋅10-5 exp(-127200/RT) m²/s [27] 

DisD  
dislocation pipe 

diffusion 
1.5⋅10-6 exp(-83200/RT) m²/s [27] 

GBD  
grain boundary 

diffusion 
2.0⋅10-5 exp(-60200/RT) m²/s [27] 

CBD  
cross boundary 

diffusion B2D  m²/s [11,25] 

CBA ,,  
strengthening 

parameters 
-16,6⋅ln(CMg)+44.6;2; 4⋅10-5 - 

This work, 

[4] 

SimK  Similitude parameter A  - [15] 

BE  binding energy 5000 J/mol 
This work, 

[1] 

MgGB,C  
HAGB-concentration 

of Mg 
CMg 

mol/ 

mol 
[11,25] 

HB  HAGB-energy 0.65-0.0005⋅T[K] J/m³ This work 

LB  LAGB-energy HB5.0   J/m³ [34] 

  grain boundary width 10-9 m [15,35] 

b  Burgers vector 2.86⋅10-10 m [36] 

  
dislocation interaction 

width 
50 b  m This work 

G  shear modulus 29438.4-15.052T[K] MPa [30] 

mean  
mean misorientation 

angle 
3° - [37] 
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HBfree,  HAGB-prefactor 0.4 - [1] 

LBfree,  LAGB-prefactor 1 - [38] 

Taylor  
strengthening 

coefficient 
0.2 - [33] 
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3. Results and discussion 

In this section, the results of our simulation are compared with the experimental data of 

Koizumi et al. [6], who carried out recrystallization kinetics measurements on a series of 

Al-Mg alloys (see section 2.3). In the considered experiments, the recrystallized volume 

fraction is measured metallographically so that there is more confidence in the measured 

values than in strength relaxation-based methods, such as double-hit compression tests or 

hardness measurements [39]. The simulations are carried out with the thermokinetic 

software tool MatCalc, in which we use the identical set of input parameters (section 2.4) 

for each simulation (material and temperature variation). The results of our simulation in 

comparison to the experiments performed by Koizumi et al. [6] are shown in figure 1.  

 

 

Figure 2: Calculated recrystallization kinetics at different temperatures for a) Al-

0.5%Mg, b) Al-1%Mg, c) Al-2%Mg, d) Al-3%Mg, e) Al-4%Mg and f) Al-

5%Mg  

Koizumi et al. [6] observe approximately one order of magnitude difference in 

recrystallization time for each chemical composition of Al-Mg alloys, when the annealing 
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temperature increases by 25 K. The main reason for this behavior lies in the variation of 

grain boundary mobility, by which the temperature dependence of the growth rate is 

determined. The solute drag effect of Mg on grain boundary movement, as quantified in 

this work on the basis of the experiments of Huang and Humphreys [1] with a binding 

energy of 5 kJ / mol in the Cahn model [2], provides an additional important mechanism 

into the entire simulation model.   

Fig. 2 demonstrates that our simulations fully reproduce the experimental 

observation that increasing Mg content first accelerates and then decelerates the rate of 

recrystallization, see Perryman [40]. A minimum of the recrystallization rate can be found 

in the Koizumi experiments [6] at a Mg content of approximately 1 wt%. This behavior 

can be described by the interplay of two mechanisms triggered by Mg atoms in the Al-

matrix:  On one hand, increasing Mg content decreases the grain boundary mobility due 

to the solute drag effect exerting a retarding pressure on the boundary during migration 

[2]. Consequently, this effect acts as a retarding process on recrystallization (Eq. 10). To 

quantify this mechanism, Fig. 1 displays the simulated boundary mobility for various 

concentrations of Mg in the matrix (section 2.2) compared to experimental data.  

On the other hand, the dislocation evolution is heavily dependent on the Mg content. In a 

recent contribution, Muzyk et al. [41] pointed out that Mg has a strong influence on the 

stacking fault energy in Al-alloys. Kocks and Mecking [16] suggest that the strain 

hardening potential in materials should scale with the stacking fault energy. Thornten [42] 

describes that the change in stacking fault energy influences the cross-slip mechanism of 

dislocations at high temperatures and thus leads to a lower rate of dynamic recovery. In 

their recent analysis, Kreyca and Kozeschnik [43] show that both, the rate of dislocation 

generation and that of dislocation annihilation due to dynamic recovery, are influenced 

by the Mg content. 

In our present simulation approach, we account for this aspect by adjusting the dislocation 

generation parameter, A, in dependence of the Mg-content as suggested by Kreyca and 

Kozeschnik [43] at room temperature. The calculated dislocation density evolution can 

then be compared to experimental stress-strain curves by applying the Taylor equation 

[5]. Thereby, the strain-induced dislocation strengthening contribution to the material, 

DS , is expressed as 

 MGbDS Taylor0  ,        ( 22 ) 

where 0 is the basic yield strength containing solid solution and grain boundary 

hardening.  
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To apply the above formula, we use Eq. 11 together with the parameters A, B, C given in 

table 1. Unfortunately, Koizumi et al. [6] do not provide values for strengthening during 

cold deformation. Therefore, we compare with measurements of Sherby et al. [4], who 

analysed the flow behaviour of different Al-Mg alloys. Figure 3 shows our simulated flow 

curves and dislocation densities for high-purity Al, Al- 0.5%Mg, Al-1%Mg, Al-1.5%Mg 

and Al- 3%Mg, where excellent agreement is achieved.  

 

Figure 3:  a) dislocation generation in dependence of different Mg-contents (high 

purity-Al, Al- 0.5%Mg, Al-1%Mg, Al-1.5%Mg, Al- 3%Mg) at 25°C b) 

resulting dislocation strengthening contribution in comparison to 

experimental data of [4] at 25°C  

The two mechanisms referenced above, solute drag and dislocation density evolution, 

severely interact in our simulation. As a consequence, the observed recrystallization 

kinetics can be likewise accelerated and decelerated, depending on the Mg content. Figure 

4 summarizes the influence of the Mg content on recrystallization kinetics. In image 4a), 

the simulated recrystallized volume fractions at 275°C are compared, showing that the 

recrystallization kinetics are faster in Al-0.5%Mg compared to Al-1%Mg. A further 

increase in Mg always leads to an increase of the recrystallization kinetics. Diagram 4b) 

shows the simulated (markers) and measured (line) 50% recrystallization temperatures. 

Excellent agreement between the experimental observations and the simulations based on 

the present model is observed. 
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Figure 4:  a) simulated recrystallization kinetics at 275°C for all considered alloys. 

b) simulated 50% recrystallization temperature (markers) and 

experimental data from ref. [6] (line). 

 

4. Summary 

In the present work, we propose a comprehensive state parameter-based model for static 

recrystallization in terms of nucleation and growth of recrystallizing grains. Both, the 

HAGB mobilities and the dislocation densities are evolved on basis of physical evolution 

expressions and they are individually analyzed and compared to independent 

experiments. On one hand, the Mg content-dependent dislocation density evolution 

promotes recrystallization with increasing alloy content due to increased dislocation 

production. On the other hand, the solute drag effect retards recrystallization due to an 

increasingly retarding effect on boundary mobility. The mutual interplay of these effects 

can be observed in both the simulation and the experiment.  
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In the present work, we introduce a state parameter based microstructure evolution model, 

which incorporates the effect of solute atoms and precipitates on recrystallization kinetics. 

The model accounts for local precipitate coarsening at grain boundaries, which promotes 

an average grain boundary movement even if the Zener pinning force exceeds the driving 

force for recrystallization. The impact of solute drag on the grain boundary mobility as 

well as simultaneous precipitation is discussed in detail. The model is verified on 

experimental data on recrystallization in V- micro-alloyed steel, where excellent 

agreement is achieved.  

 

Keywords: Recrystallization; Precipitation; Zener pressure; Solute drag; micro-alloyed 

steel, Vanadium  

 

1. Introduction 

During thermo-mechanical processing of crystalline materials, the growth velocity of 

recrystallizing grains can strongly be affected by the presence of precipitates and solute 

atoms. Precipitates interact with the moving grain boundaries via the well-known Zener 

pinning effect [1], which acts as a retarding force on the velocity of boundary movement. 

The magnitude of the Zener pressure is mainly determined by the precipitate phase 

fraction and size, which are commonly evolving in the course of thermo-mechanical 

treatment. In case of micro-alloyed steel, this effect is experimentally well analysed for 

the case of carbo-nitrides forming with minor additions of Al, V, Ti and Nb [2].  

In addition to Zener pinning, the grain boundary mobility can also be drastically 

influenced by the solute drag effect [3]. In this case, elements that are segregated into the 

grain boundary must be “dragged along” with the moving boundary, thus exerting a 

retarding effect on the movement. The absolute value of the solute drag effect is mainly 

determined by the nominal concentration of the solute drag elements and their binding 
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energy to the grain boundary. Detailed experiments in steel [4] show that V, Mo, Ti and 

Nb are probably the most practically relevant elements with regard to solute drag in 

austenite of Fe-based alloys. A proper consideration of both effects, Zener drag and solute 

drag, is therefore essential for a successful simulation of recrystallization kinetics. 

In literature, two types of simulation approaches exist for a description of these effects in 

micro-alloyed steel: phenomenological and physically-based models. On one hand, 

Medina and co-workers [2,5] utilize a phenomenological approach based on the Avrami 

model [6]. In this approach, the impact of precipitation on recrystallization is described 

by means of two coupled Avrami equations. The fast reaction term reproduces 

recrystallization kinetics in the regime before the Zener pressure exceeds the driving 

pressure for recrystallization. As soon as precipitation starts to control the grain boundary 

mobility, the slower Avrami kinetics becomes dominant. By interconnecting both 

solutions (slow and fast kinetics), Medina et al. are able to describe the evolution of the 

recrystallized fraction for a large amount of precipitation-controlled recrystallization 

experiments. The additional effect of solute atoms on grain boundary mobility is taken 

into account indirectly by an empiric formula, which accounts for the nominal chemical 

composition of the steel with a composition-dependent activation energy for 

recrystallization.  

In contrast, Zurob et al. [7,8] suggest a physically-based approach, where the 

growth of recrystallized grains is expressed in terms of mobility and driving pressure. The 

impact of precipitation on growth kinetics is incorporated in the driving pressure term via 

the effective driving force resulting from the difference between recrystallization driving 

and Zener pinning pressure. This approach is well in line with former models suggested 

by Hillert [9] and Nes [10]. The solute drag impact in the Zurob et al. model is accounted 

for on basis of the work of Cahn [3] and it is, thus, included inherently in the grain 

boundary mobility. 

In the present work, a comprehensive state parameter-based model coupling a multi-

component multi-phase framework for precipitation kinetics simulation with a 

physically-based grain boundary movement and recrystallization approach including the 

impact of precipitation is introduced. The precipitation kinetics simulations are utilizing 

the comprehensive thermokinetic simulation environment MatCalc [11], where 

precipitation kinetics are computed as a function of temperature, deformation conditions 

and alloy compositions in a more or less fitting parameter-free manner. The successful 

applicability of MatCalc to precipitation problems in microalloyed steel has been 
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demonstrated many times, see, for instance, refs. [12–14]. The nucleation and growth 

models utilized in the precipitation kinetics simulations are described in detail in refs. 

[15–21]. The recrystallization model is introduced subsequently.  

 

 

2. The Model  

2.1 Recrystallization 

The evolution of the polycrystalline microstructure after deformation is expressed in 

terms of the nucleation and growth kinetics of recrystallized grains. The formation of 

recrystallization nuclei is assumed to occur on the junctions of high angle grain 

boundaries (HAGB) and low angle grain boundaries (LAGB), as experimentally 

confirmed in low alloyed steel in ref. [22]. Consequently, the nucleation rate, rxN , is 

written as  
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where δ is the subgrain diameter, D is the mean unrecrystallized grain diameter, Crx is a 

calibration coefficient, Qrx is an activation energy similar in value to that for substitutional 

self-diffusion along grain boundaries, Xrx is the recrystallized fraction and R is the 

universal gas constant. The parent austenite grain is assumed to be of spherical geometry. 

The criterion for nucleation is determined by the ratio between the surface energy of a 

subgrain, LB , and the driving force for recrystallization, DP , which is provided by the 

excess of deformation-induced dislocations. The corresponding relation [23]  reads as 





2

LB

D

LB

5.0

33

bPcrit  .        ( 2 ) 

The energy contribution of dislocations is calculated via the shear modulus,  , the 

burgers vector, b, and the excess dislocation density  . Once the nucleus exceeds a 

critical size, its further growth rate, rxD , is expressed in terms of an effective HABG 

mobility , HBeff,M , and the driving force as  

)1( rxDHBeff,rx XPMD  .        ( 3 ) 

In the course of recrystallization, the overall growth velocity of recrystallizing grains is 

assumed to decrease as a consequence of decreasingly available unrecrystallized volume. 

The evolution of the recrystallized fraction, which represents the ratio between the 
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velocity of recrystallized volume gain, rxV , and total volume, totV , is expressed as 

superposition of a term related to the nucleation of newly recrystallized grains and growth 

of existing ones as  
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The evolution of the dislocation density is described by means of an extended Kocks-

Mecking model considering the processes of dislocation generation as well as dynamic 

and static recovery. In this context, we closely follow the approach introduced by 

Sherstnev et al. [24] describing the rate of the total dislocation density evolution as  
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with the Taylor factor, M, the critical dislocation annihilation distance, dann, the 

substitutional self-diffusion coefficient at dislocations, DDis, the strain rate  , and 

material parameters A, B, C. However, in contrast to the original Sherstnev et al. model, 

where the authors assume that the driving force for static recovery is given by the 

difference of actual and equilibrium dislocation density, we introduce a limiting degree 

of static recovery, here, given by the amount of geometrically necessary dislocations, RS

, for maintaining the subgrain microstructure. In the Read-Shockley model [25], which is 

adopted here, the mean subgrain misorientation angle, mean , and the mean subgrain size, 

 , in a periodic network in the grain boundary plane, define the required dislocation 

density, RS , as  
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b

mean
RS

tan
 .         ( 6 ) 

The deformation-induced subgrain size is assumed to be correlated with the dislocation 

density by means of the principle of similitude [26,27]. This mainly empirical relation 

delivers a cell/subgrain size, which is directly linked to the dislocation density evolution 

during deformation with 


 K
 ,          ( 7 ) 

where K is a material parameter. After deformation, and before the onset of 

recrystallization, subgrain coarsening takes place. The mean growth rate of subgrains is 

expressed in terms of an effective LAGB mobility, Meff, LB, and a driving force provided 

by curvature  
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
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3
M ,         ( 8 ) 

with LBeff,M  as an effective LAGB mobility.  

 

2.2 Precipitates and solute atoms  

Micro-alloying elements in steel can have two effects on recrystallization kinetics: Zener 

pinning by carbo-nitride particles and solute drag by solid solution atoms [7]. For the 

effect of precipitates, the Zener pressure, ZP , can be expressed [10] as  
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with f being the precipitated phase fraction and r  being the mean precipitate radius. 

Since the MatCalc precipitation kinetics framework offers detailed information on the 

size distribution of precipitates also, in the simulations, a size class-based formulation of 

the Zener pressure is used as introduced by Rath and Kozeschnik [28] in a recent 

treatment of coupled precipitation and grain growth. To account for different precipitate 

types, i, and size classes, k, we use the following expression which reads 


i k ik

ik

r

f
ikP

,

,
HBZ 2

3
),(  .        ( 10 ) 

To describe the impact of precipitation on recrystallization, we assume that the 

precipitates, which potentially pin the boundaries, are interconnected along high velocity 

diffusion paths, i.e. the grain boundaries. Due to the fast diffusion kinetics along the 

boundaries, the precipitates are subject to significantly accelerated coarsening. When the 

number density of precipitates pinning the boundary decreases due to coarsening, the 

Zener pressure decreases and the grain boundary becomes locally released. The free grain 

boundary then continues to move further into the deformed microstructure until it 

encounters a new front of pinning precipitates, where the local coarsening procedure 

repeats. On average, the grain boundary can thus continuously move through the material 

even if the Zener pressure determined by the initial precipitate distribution exceeds the 

driving pressure for recrystallization. This issue is discussed in detail in ref. [29].  

In support of this concept, Yazawa et al. [30] and Jones and Ralph [31] 

experimentally observed this special precipitate coarsening behaviour in the presence of 

recrystallization. The precipitates in front of the moving boundary and behind had 

significantly different average size and number density. To mimic this behaviour in our 

model, we include the Zener pressure into the mobility term instead of reducing the 
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available driving force by the Zener pressure to obtain an effective driving force. The 

resulting mobility taking into account the particle pinning effect reads as 
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where precM  is the effective mobility of the grain boundary in the presence of precipitates, 

freeM  is the free mobility without any dragging and retarding influences of particles and/or 

solute atoms, and pinnedM  is the limiting (non-zero) mobility, which is adopted by the 

grain boundary when the Zener pressure exceeds the driving pressure for recrystallization.  

In the present model, the impact of solute drag is modelled on basis of the work 

of Cahn [3]. Accordingly, the dragging effect of solute atoms, which are segregated into 

the grain boundary, is incorporated into the mobility term with 
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 ,        ( 12 ) 

where SDM  is the mobility of the grain boundary in the presence of solute drag, GBC  is 

the grain boundary concentration of the solute drag element and is an inverse mobility. 

The latter determines the temperature dependency of the solute drag effect via the grain 

boundary/atom interaction energy, BE , given as 
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where   is the grain boundary width, MV  is the molar volume of the matrix phase and 

CBD  is the cross boundary diffusion coefficient of the solute drag element. For 

convenience, in the present analysis, the grain boundary concentration is assumed to be 

identical to that of the matrix without any regard of additional element segregation into 

the boundary. 

The integral effective mobility is finally evaluated as  

1

SDprec
HBeff,
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
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

MM
M ,       ( 14 ) 

which is in accordance with Cahn´s original suggestion of combining the solute drag 

mobility with the free mobility.  

 

2.3 Materials  
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To verify the present model, we analyze the experimental observations on simultaneous 

recrystallization and precipitation reported by Medina et al. [32]. The selected materials 

have been investigated at different degrees of supersaturation, determined by the V and 

N content. The chemical composition, thus, also determines the solution temperature, TSol, 

listed in Table 1, in addition to the starting grain size. The experiments are carried out in 

a temperature range between 825°C and 1100°C, at a strain rate of 3.63s-1 and at a strain 

of 0.35. 

 

Table 1: Chemical composition of simulated materials [32]. 

ID. 
V 

[wt.-%] 

C 

[wt.-%] 

N 

[wt.-%] 

TSol 

[°C] 

D0 

[µm] 

V1 0.043 0.11 0.0105 1023 172 

V2 0.06 0.12 0.0123 1058 167 

V3 0.09 0.12 0.0144 1106 165 

 

2.4 Model parameters 

Apart from the parameters Crx and Qrx, eq. (1), which determine the nucleation rate of 

recrystallizing grains, a major input quantity into the recrystallization simulations is the 

effective mobility of the recrystallization front, i.e., the grain boundary mobility. This 

quantity (eq. 14) is basically determined by three partial mobilities: (i) ,freeM (ii) pinnedM  

and (iii) SDM , which are discussed in more detail next. 

(i) The free mobility is parameterized in accordance to the suggestion of Turnbull [33] as 

RTb

VD
MM

2
mGB

freeTBfreefree

  ,      ( 15 ) 

where free  is a linear pre-factor, TBM  is the Turnbull mobility,   is the grain boundary 

width and GBD  is the substitutional self-diffusion coefficient along grain boundaries. The 

latter is adopted from a recent independent assessment of Stechauner and Kozeschnik 

[34], providing the essential information on the temperature-dependence of the free 

mobility, which thus becomes a fixed quantity in our treatment instead of being an 

unknown fitting parameter. The absolute value of this quantity is adjusted such that it is 

in accordance to the mobility suggestion for low alloyed austenite reported in ref. [35]. A 

pre-factor of free  =1.5% is chosen in the present work. A grain boundary width of   

=1nm is adopted from ref. [36]. 
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(ii) The pinned mobility concept, as utilized in the present work, is based on the 

assumption of local precipitate coarsening along grain boundaries. This concept has been 

introduced recently in ref. [29] and it was briefly described earlier in section 2.2. In an 

analysis of grain boundary precipitate coarsening, Kirchner [37] showed that coarsening 

at grain boundaries should obey a temperature-dependence determined by the grain 

boundary diffusion coefficient. We thus conclude that the temperature-dependence of the 

Turnbull mobility is also determining the local coarsening kinetics. Therefore, we adopt 

this concept for the pinned mobility and express it as a fraction of the Turnbull mobility 

with  

TBfreepinnedfreepinnedpinned MMM    ,     ( 16 ) 

with a dimensionless pre-factor, pinned . In the present work, its value is set to 3%.  

(iii) The empirical studies by Andrade et al. [4] show that the solute drag effect of V 

during recrystallization is considerably smaller than that of Ti or Nb, however, it is 

supposed to be still conceivable at lower temperatures. Unfortunately, Andrade et al. do 

not report absolute values for the binding energy of V to the grain boundary within the 

framework of the Cahn model [3]. We assume that the trapping energy of V to the 

austenite grain boundaries is of the order of 2.5 kJ/mol, because this value delivers good 

agreement with experimental evidence.  

The driving pressure for recrystallization is mainly determined by the amount of 

excess defects (dislocations) that are introduced into the material during deformation. The 

dislocation density evolution is, in turn, determined by the material parameters A, B and 

C (eq. 5) and, in the present work, adjusted to the flow curve data of Hernandez et al. [38] 

utilizing the Taylor forest hardening law. For the deformation conditions reported there 

and used here, the computed dislocation densities reach maximum values below 8·1014  

m-2. The parameters used in the present study are summarized in table 2. These are used 

without further adjustment in all simulations presented subsequently. 
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Table 2:  Input parameters for recrystallization simulation 

Para

meter 
Value Unit Ref. 

DDis 4.5·10-5 exp(185000/RT) m²/s [34] 

DGB 5.5·10-5 exp(145000/RT) m²/s [34] 

DCB 2DB m²/s [36] 

Qrx 145 kJ/mol [34]  

Crx 1.5·106 - This work 

γHB 1.3111-0.0005T J/m2 [7] 

γLB 0.5γHB J/m2 This work 

A, B, 

C 
50; 5; 5·10-5 - This work 

θmean 3 degree This work 

EB,V 2.5 kJ/mol This work 

ω 1·10-9 m [36] 

ηfree,H

B 
1.5·10-2 - [34,35] 

ηpinned,

HB 
3·10-2 - This work 

 

3. Results and discussion 

In this section, we compare our simulations with the experimental data obtained by 

Medina and co-workers [32] on a series of V-microalloyed steels (see table 1). In the 

simulations, we apply the same thermo-mechanical treatment as reported in the 

corresponding study. To obtain information on the initial grain size for recrystallization 

after solution heat treatment at 1230°C for 600s, Medina et al. [32] utilize metallographic 

methods. The double hit deformation experiments are performed as torsion tests at 

different temperatures ranging from 825°C to 1100°C. The deformation conditions are 

kept constant during every measurement with a strain rate of 3.63s-1 and a strain of 0.35. 

Figure 1 shows our simulation results in comparison to the experiments from ref.[32]. 

With the single set of input parameters, we obtain excellent agreement for all three steels 

investigated here. For illustration of the effect of solute drag, we have computed the 

recrystallization kinetics at the two lowest temperatures for each alloy with and without 

solute drag (dashed grey lines).  
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Figure 1: Calculated and experimental recrystallization kinetics for steels V1, V2 

and V3 from ref. [32]. Dashed lines: Computed curves neglecting the 

solute drag effect. 

 

In each of the considered alloys, the recrystallized fractions exhibit distinct plateaus of 

recrystallization stasis, which are caused by the pinning effect of V(C,N) precipitates on 

the moving grain boundaries. With increasing V-carbonitride supersaturation from alloy 

V1 to V3, the increasing pinning potential affects recrystallization in two ways: (i) the 

plateaus start at earlier times and (ii) the plateaus occur at higher testing temperatures. 

Both trends are well captured by the simulations and can clearly be attributed to the 

corresponding differences in precipitation kinetics. With increasing V and N contents, the 

driving force for precipitation increases and, thus, the driving pressure for 
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recrystallization is compensated by the retarding Zener pressure at earlier times and at 

higher temperatures.  

As soon as the Zener pressure equals the driving pressure for recrystallization, the 

effective grain boundary mobility is drastically reduced and a slower recrystallization 

kinetics is observed. Figure 2 illustrates the occurrence of these thresholds for each 

considered alloy by plotting the time-temperature-precipitation (TTP) kinetics for the 5% 

precipitated phase fraction lines and for the lines where PD equals PZ. For the present set 

of investigated alloys, a time range within approximately a factor of four is spanned and 

a corresponding temperature interval of approximately 70°C. The precipitation 

simulations clearly support the interpretation that the recrystallization plateaus are caused 

by Zener pinning. 

In analyses of results from double-deformation experiments, the nature of 

softening fractions and their relation to recrystallized fraction is discussed controversially 

in literature. On the one hand, Zurob et al. [39] suggest that dislocation pinning by 

precipitates represents the origin of the measured plateaus. These authors argue that static 

recovery is severely hindered if the number density of precipitates exerts a certain limit. 

By virtue of a pinned dislocation network, no further energy loss and, thus, softening 

would be measured if a softening fraction method is used for evaluation. Consequently, 

if recrystallization and precipitation occur simultaneously, these authors argue that 

softening fraction measurements neither deliver information on the recrystallized 

fraction, nor is classic Zener pinning the reason for the observed plateaus.  

On the other hand, Medina et al. [40] relate the observed plateaus directly to the 

recrystallized fraction and the interaction of recrystallization with particle pinning. These 

authors claim that their softening fraction data measured with the back-extrapolation 

method correlate well with the recrystallized fraction. To support their arguments, they 

analyze a substantial amount of experimental data and confirm their analysis with 

metallographic characterization of recrystallization at different stages during their 

experiments [41–43]. In the present work, we adopt the interpretation of Medina et al., 

however being aware that some controversy exists in this field. 
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Figure 2: Simulated TTP-curves for 5% precipitated fraction and the position where 

the driving pressure for recrystallization equals the Zener pinning pressure.  

 

In Fig. 1, the recrystallized fraction curves are calculated with and without consideration 

of the solute drag effect caused by V atoms. Apparently, the impact of solute drag is rather 

substantial at lower temperatures, whereas it appears to be negligible at higher 

temperatures. The calculated partial mobilities plotted in Fig. 3 support this observation. 

The black dashed line shows the mobility suggested by the Turnbull approach, which is 

based on the grain boundary diffusion coefficient assessed in ref. [34]. The grey dashed 

line denoted by Mfree represents the effective mobility of the unpinned and solute drag-

free boundary. MSD is the mobility calculated from the Cahn model, eqs. (11) and (12), 

and using a binding energy between V atoms and grain boundary of 2.5 kJ/mol. The 

effective mobility for the unpinned grain boundary, Meff,HB, is deviating from Mfree only 

at the lowest temperatures, whereas they converge at the higher temperatures. The grain 

boundary mobility accounting for the pinning effect of precipitates is effective only after 

the driving force for recrystallization balances the Zener pressure, i.e., PD equals PZ. Once 

the grain boundary is pinned by precipitates, solute drag is ineffective in the present steels 

under consideration. 
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Figure 3: Partial mobilities utilized in the simulations for alloy V3  

 

4. Summary 

In the present work, we propose a comprehensive model for thermokinetic modeling of 

simultaneous recrystallization, precipitation and solute drag. The impact of precipitation 

on the observed recrystallization stasis is assumed to be determined by Zener particle 

pinning and the kinetics of local precipitate coarsening at grain boundaries. In contrast to 

conventional modeling approaches, this effect is included into the mobility term instead 

of evaluating a threshold value for complete recrystallization stasis with zero grain 

boundary mobility. This consideration is essential for a consistent simulation of 

experimentally evidenced recrystallization plateaus. In addition to Zener pinning, the 

solute drag effect is incorporated in the sense of the Cahn solute drag approach. It is 

demonstrated that this effect has significant impact on the recrystallization kinetics at the 

lowest testing temperatures. We observe good agreement between simulations and 

experiments with a binding energy of 2.5 kJ/mol.     
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In the present work, we develop a state parameter-based model for the treatment of 

simultaneous precipitation and recrystallization based on a single-parameter 

representation of the total dislocation density and a multi-particle multi-component 

framework for precipitation kinetics. In contrast to conventional approaches, the 

interaction of particles with recrystallization is described with a non-zero grain boundary 

mobility even for the case where the Zener pressure exceeds the driving pressure for 

recrystallization. The model successfully reproduces the experimentally observed 

particle-induced recrystallization stasis and subsequent continuation in micro-alloyed 

steel with a single consistent set of input parameters. In addition, as a state parameter-

based approach, our model naturally supports introspection into the physical mechanisms 

governing the competing recrystallization and recovery processes.  

 

Keywords: Recrystallization; Precipitation; Zener pressure; micro-alloyed steel; MatCalc  

 

Introduction 

The original work of Smith and Zener [1], introducing a formalism for the energetic 

interaction between second phase particles and grain boundaries, triggered significant 

scientific effort into further exploration of this topic. In modeling grain growth based on 

the concept of mobility and driving pressure, Hillert [2] incorporates the effect of second 

phase particles as integral part of the driving pressure term, which ultimately leads to a 

limiting grain size determined by the balance of retarding and driving forces. Subsequent 

investigations focusing on recrystallization modeling, such as, among many others, the 
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ones by Nes [3], Humphreys [4] and Zurob et al. [5,6], confirm the applicability of this 

concept.  

Despite an apparent success in describing the onset of recrystallization stasis caused by 

precipitates, the processes governing the continuation of the recrystallization process and 

its interaction with the ongoing precipitate evolution are not well understood and 

inconsistently described in literature. Although the experimentally observed completion 

of recrystallization is commonly attributed to precipitate coarsening and the 

accompanying reduction of the Zener pressure, its kinetics is not related to conventional 

Ostwald ripening, but to some faster coarsening mechanism. In a recent contribution [7], 

the assumption of local coarsening along the pinned grain boundaries has been suggested, 

however, no corresponding local coarsening model has been formulated, there.  

In the present work, we present a novel approach describing static recrystallization 

and its interaction with precipitation. The latter is simulated on basis of the thermokinetic 

software MatCalc, which delivers phase fraction and size distribution of precipitates in 

the framework of the multi-particle SFFK model [8-9], extended multi-component 

classical nucleation theory as described in detail in ref. [10] and interfacial energies 

calculated in the generalized broken bond (GBB) approach [11-13]. From the simulated 

particle distributions, the retarding pressure due to grain boundary pinning is evaluated 

and utilized further in the recrystallization model, which is introduced next. 

 

A model for simultaneous recrystallization and precipitation 

The evolution of polycrystalline grains during recrystallization is expressed in terms of 

the mean grain sizes of recrystallized and non-recrystallized (deformed) grains. The 

formation of newly recrystallized grains is assumed to occur on the junctions of high 

angle grain boundaries (HAGB) and low angle grain boundaries (LAGB) [14]. The latter 

are assumed to be introduced throughout the deformation process. Accordingly, the 

nucleation rate, rxN , is given as 
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where δ is the subgrain diameter, D is the mean non-recrystallized grain diameter, Crx is 

a calibration coefficient, Qrx is an activation energy similar in value to that for 

substitutional self-diffusion along grain boundaries, Xrx is the recrystallized fraction, R is 

the universal gas constant and T is temperature. A stable nucleus is assumed to be a 
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(deformation-induced) subgrain that is (i) in contact with a HAGB and (ii) exceeds a 

critical size, δcrit, given by the ratio of the interfacial energy of the LAGB, γLB, and the 

driving pressure, PD, with 




2
LB

D

LB

5.0

33

bPcrit 
,

        ( 2 ) 

where the driving pressure originates from the removal of stored energy of dislocations 

introduced by deformation. It is characterized by the mean dislocation density, ρ, the 

shear modulus, μ, and the Burgers vector, b. The curvature expression in terms of 

subgrain diameter and surface energy is adopted from ref. [15]. After nucleation, the 

growth rate of recrystallizing grains, 
rxD , is expressed by the product of an effective 

HAGB mobility (Meff, HB) and the driving pressure, scaled by the remaining non-

recrystallized volume fraction, (1-Xrx), as   

)1( rxDHBeff,rx XPMD 
.
        ( 3 ) 

The evolution of the recrystallized fraction, which represents the ratio between 

recrystallized volume, rxV , and total volume, totV , is expressed as superposition of a term 

related to the nucleation of new recrystallized grains and growth of existing ones as  
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The essential quantity for evaluation of the nucleation rate of recrystallized grains, rxN , 

is apparently the mean dislocation density,  , which is directly corresponding to the 

energy that is stored in the polycrystalline microstructure as a consequence of 

deformation. In our work, the evolution of the dislocation density is described by means 

of an extended Kocks-Mecking model considering deformation-induced dislocation 

generation as well as dynamic and static recovery. We closely follow the approach 

introduced in ref. [16], where the evolution of the total dislocation density has been 

proposed as 
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 ( 5 ) 

with the Taylor factor, M, the critical dislocation annihilation distance, dann, the 

substitutional self-diffusion coefficient along dislocations, DDis, the Boltzmann constant, 

kB, the strain rate, φ, and material parameters A, B, C. 
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The strain-induced subgrain size is assumed to be correlated with the mean dislocation 

density by the principle of similitude [16-17]. This mainly empirical relation delivers a 

cell/subgrain size, which is directly linked to the dislocation density evolution during 

deformation with 


 K
 .          ( 6 ) 

Here, K is a material parameter. After deformation and before the onset of static 

recrystallization, subgrain growth and coarsening take place simultaneously, leading to a 

reduction of the total dislocation density. To describe this process, the mean growth rate 

of subgrains is expressed in terms of an effective LAGB mobility, Meff, LB, and a driving 

force provided by the mean subgrain curvature with 


 LB

LBeff,

3
M .         ( 7 ) 

The expression for the LAGB mobility is taken from Sandström [19], where the LAGB- 

mobility is proposed as 

Tk

bD
M

B

2
B

LBeff,LBeff,   ,       ( 8 )  

with the substitutional self- diffusion coefficient in the bulk, BD ,and a linear parameter 

LBeff, . 

For the interaction of recrystallization with precipitation, we assume that the 

precipitates nucleate and grow in a random spatial distribution within the grains. In the 

sense of the Smith and Zener model [1], the recrystallization front comes to a stop once 

the retarding pressure exerted by the precipitates equals or exceeds the driving pressure.  

After the grain boundary has become immobile, the pinning precipitates are, now, 

interconnected by a high-velocity diffusion path, i.e., the grain boundary, and they are 

therefore exposed to fast local coarsening. As a consequence, the density of strain induced 

precipitates, pinning the boundary, decreases locally at a substantially increased rate and 

the pinning pressure quickly decreases. Thus, the grain boundary becomes locally 

released and moves on until it is pinned again by the next generation of strain induced 

precipitates in front of the moving boundary. Local coarsening sets in again and the 

process is continuously repeated, leaving behind a recrystallized volume with precipitates 

that have undergone a local coarsening process as sketched in Fig. 1. This process has 

been observed and confirmed experimentally by Yazawa et al. [20] for VC particles and 

by Jones and Ralph [21] for NbC- particles in austenite. 
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Figure 1: Sketch of a recrystallizing grain boundary passing through a forest of 

obstacles (precipitates).  

 

In the presence of local coarsening and on an average basis, the recrystallization 

front thus never comes to a complete stop, but alternating individual segments of the 

boundary continuously progress into the unrecrystallized volume. Consequently, this 

process is comparable in nature to the movement of an interface through a viscous 

medium, which can be expressed by a characteristic mobility governed by the kinetics of 

local coarsening. In contrast to most other modeling approaches [2–7], in the present 

work, the Zener pressure, PZ, is therefore not incorporated in the driving force term for 

recrystallization but accounted for indirectly in an effective grain boundary mobility, 

expressed in terms of a weighted superposition of an obstacle-free mobility, Mfree,  

representing the mobility of the grain boundary in the absence of precipitates, and a 

pinned mobility, Mpinned, describing the effective mobility of the grain boundary in the 

presence of particles subject to the mechanism of local coarsening, as  
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In this approach, the boundary mobility maintains a finite, non-zero value even in the case 

where the retarding pressure exceeds the driving pressure. Thereby we simplify and treat 

growing precipitates and precipitates which have already undergone the classical growth 
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process with the same pinned mobility value.The Zener pressure itself is given for a 

spatial distribution of spherical precipitates in dependence of the precipitate radius, pr , 

and the precipitate phase fraction, pf , by Nes et al. [3] as  
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 .          ( 10 ) 

Input parameters to the microstructure model 

A crucial aspect for the quantitative reproduction of experimental data on the 

recrystallization stasis in the present context is the appropriate choice of values for the 

grain boundary mobilities, Mfree and Mpinned. In the present work, we adopt a model 

proposed by Turnbull [22], relating the free mobility of a HAGB to the grain boundary 

diffusivity, DGB, of the majority substitutional element as  

RTb

VD
MM

2
mGB

freeTBHBfree,free

   ,      ( 11 ) 

with the grain boundary thickness, ω, the grain boundary mobility suggested by Turnbull, 

MTB, and the molar volume Vm. In the simulations, the grain boundary diffusivity of fcc 

Fe is adopted from the recent independent assessment of Stechauner and Kozeschnik [23]. 

As a major consequence, this choice delivers the principal temperature-dependence of the 

grain boundary mobility interrelated with the temperature-dependence of the grain 

boundary diffusion coefficient. Thus, the necessity of taking the activation energy for 

grain boundary movement as an unknown fitting parameter is eliminated. The absolute 

value for the free mobility is calibrated on basis of the experiments of Zhou et al. [24] in 

the parameter HBfree, , which delivers excellent agreement with a value of 1,5%.  

The temperature-dependency of the pinned mobility should be somehow related 

to that of the free mobility [25], since precipitate coarsening along grain boundaries, as 

well as the grain boundary mobility itself, are controlled by substitutional diffusion inside 

the grain boundary. Thus, we model the pinned mobility as a linear fraction of the free 

mobility with  

freeHBpinned,pinned MM  ,         ( 12 ) 

again with the principal temperature-dependence determined by the grain boundary 

diffusivity. 

The driving pressure for recrystallization is mainly determined by the stored 

energy of the deformation-induced dislocations. Therefore, the calibration parameters (A, 

B, C) of the extended Kocks- Mecking model (Eq. 5) are adjusted such as to reproduce 

flow curves reported by Hernandez et al. [26]. The observed dislocation densities do not 
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exceed 8·1014 m-2 and deliver appropriate flow stresses in the sense of the Taylor forest 

hardening law with the input parameters similar to those mentioned in ref. [6]. A 

collection of input parameters obtained in the present work is given in table 1. These 

values are consistently used over the whole range simulation conditions. 

 

Table 1. Simulation input parameters 

Parameter Value Ref. 

ηfree, HB 1.5·10-2 [20- 21] 

ηpinned, HB 3·10-2 This work 

ηeff, LB 7.5·10-3 This work 

γHB [J/m²] 1.3111-0.0005T [6] 

γLB [J/m²] 0.5γHB This work 

Qrx [kJ/mol] 145 [23] 

Crx 106 This work 

A (Eq. 5) 50 This work 

B 5 This work 

C 5·10-5 This work 

 

Simulation results and discussion 

The performance of our model is verified exemplarily on experimental data reported by 

Quispe et al. [27], analyzing the recrystallization behavior of V micro-alloyed steel in 

dependence of different starting austenite grain sizes and temperatures. Figure 2 presents 

the essential results of our simulation approach in the form of recrystallized fractions 

compared to the experimental softening fractions reported in Ref. [27]. Below 1000°C, 

the precipitation of V(C, N) particles increasingly interacts with the recrystallization 

process by exerting a retarding pressure on the moving grain boundary. Once the retarding 

pressure exceeds the driving pressure for recrystallization, the effective mobility of the 

recrystallization front decreases to a value given by the pinned mobility, Mpinned, which is 

taken as 3% of the free mobility. The physical meaning of this value is related to the 

critical time that is required for the local coarsening until ZP decreases below DP . Thus, a 

different alloy could require a different linear prefactor for the calculation of Mpinned. 
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Figure 2: Simulated recrystallized fraction as a function of temperature compared to 

experimental results from Quispe et al. [27] with different grain sizes  

 

In the present work, so far, the softening fractions observed by means of torsion tests 

performed by Quispe et al. [26] have been interpreted as being identical to our calculated 

recrystallized fractions. This is in line with the interpretation of these authors, however, 

it has been discussed controversial approaches in literature and we want to address this 

issue, therefore, in the following. There exist mainly two interpretations of the 

recrystallization stasis plateaus as measured via the softening fraction method: On the one 

hand, Zurob et al. [6] suggest to explain the occurrence of the measured softening plateaus 

as a result of dislocation pinning by precipitates. According to their theory, static recovery 

is not possible if precipitates pin the dislocation network. Consequently, the deformation-

induced excess energy remains stored in the material. Based on this assumption, Zurob et 

al. [28] formulate general recrystallization maps, where almost no recrystallization occurs 

till the “end” of the softening plateaus.  Thus, these authors identify no direct relation 

between softening and recrystallized fractions in their consideration of simultaneous 

precipitation and recrystallization, which is supported by the key experiments of Llanos 

et al. [29,30] and Kang et al. [31]. On the other hand, Medina and coworkers [32] directly 

relate the measured softening plateaus as calculated by their back extrapolation method 

to recrystallized fractions even if precipitation interacts with recrystallization. This 

method is experimentally confirmed for a significant amount of softening data, where 

metallographic measurements have been made directly in the plateau regions of V and 

Nb alloyed steel. These authors observe excellent agreement between softening and 

recrystallized fractions in their analysis [27,33,34]. Without further going into this 

discourse, the present authors adopt the interpretation of Quispe et al. [26] and analyze 

their simulation results accordingly. 



76 

 

A major advantage of the present model is that the progress of recrystallization is 

described on basis of fundamental state parameters, such as dislocation density, grain 

size, subgrain size and distribution of precipitates. Consequently, our approach provides 

considerable potential for introspection, i.e., the possibility of shedding insight into the 

physical mechanisms of recrystallization and its interaction with, e.g., deformation, 

recovery and precipitation. For illustration, Figure 3 displays the simulated grain size 

evolution in comparison to metallographic observations, which have been reported by 

Quispe et al [27] for two temperatures exhibiting a pronounced recrystallization plateau 

(850°C, 50s and 900°C, 70s).  

Three types of calculated grain sizes may be compared to experiments: (i) the 

former austenite grain size, (ii) the recrystallized grain size and (iii) a mean grain size, 

Dmean, which is calculated as volumetric weighted superposition of (i) and (ii) by means 

of the recrystallized fraction. The metallographic analysis at 850°C shows a 

microstructure with approximately 50% recrystallized grains and an overall 

heterogeneous size distribution. The observed microstructure is well reproduced by our 

simulation, with a significant gap between the mean sizes of recrystallized and non-

recrystallized grains. In contrast, at 900 °C, a more homogeneous microstructure is 

observed, which is attributed to the high recrystallized fraction of approximately 85%. 

This situation is also well reproduced by our simulation. To complement this comparison, 

we also display predicted grains sizes from an empirical relation for the recrystallized 

grain size of microalloyed steel as suggested by Sellars [35] with 

67.0

67.0

Sellarsrx, 5.0

D

D  .         ( 13 ) 

This relation delivers a recrystallized grain size of 33 µm, when using the corresponding 

parameters, D=180µm and ε=0.35. These results are shown in Fig. 3 as symbols, in close 

agreement with our simulation at 99% recrystallized fraction. 
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Figure 3.  Simulated grain size evolution for simultaneous recrystallization and 

precipitation at different temperatures. Metallographic results reproduced 

from ref. [27], with permission of Elsevier. 

 

In addition, our simulation approach provides insight into details of the nucleation 

process by evolving the mean subgrain size as critical condition for the number of newly 

formed supercritical nuclei, Eq. (1). In their work, Quispe et al. [27] observe that 

recrystallization kinetics are accelerated with decreasing starting austenite grain size. This 

is attributed to a higher nucleation site density due to an increasing total grain boundary 

surface area. Yoshie et al. [36] claim that the specific grain boundary area scales with the 

inverse of grain size, in accordance with Eq. 1. Figure 4 illustrates the evolution of the 

simulated state parameters, where the nucleation period and amount of stable nuclei are 

depicted for both considered starting grain sizes (95µm and 180 µm) at 850°C. The 

interesting observation from the considered experiments is that the impact of the starting 

grain size on recrystallization remains the same even in the presence of the retarding 

effect of precipitates. This is particularly prominent in the 850°C results, where the 

plateau height changes by approximately 20% due to a different starting grain size (Fig. 

2). The same is indicated by our simulation, which explicitly relates the different plateau 

heights to the grain size dependence of recrystallization nucleation rate.    
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Figure 4: Evolution of some simulation state variables for different starting grain 

sizes at 850°C. 

 

Finally, figure 5 summarizes the calculated kinetics of precipitation and 

recrystallization in the form of a Recrystallization-Time-Temperature-Precipitation 

(RTTP) plot. The diagram displays the progress of recrystallization for several iso-

recrystallization lines together with the simulated 5% and 90% precipitation phase 

fraction lines. The plot clearly shows that the onset of recrystallization stasis is directly 

related to the precipitated phase fraction and the increasing Zener drag accompanying the 

precipitation progress. For illustration, the diagram also shows the line where the 

recrystallization driving pressure equals the Zener drag, i.e., the line where PD equals PZ, 

which is qualitatively in good agreement with experimental observation from refs. 

[29,37], who claim that this line is located between 5% and 27% of precipitated phase 

fraction. Furthermore, the simulated start of conventional Ostwald ripening in the 

deformed microstructure, V(C,N)LSW is depicted, which clearly shows that the kinetics of 

bulk diffusion-controlled precipitate coarsening has too low kinetics to explain the 

measured onset of recrystallization after the stasis plateau.  

 

Figure 5: Simulated RTTP- diagram for V-microalloyed steel with 180µm starting 

austenite grain size 
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Conclusion 

In this work, we introduce a new approach for modeling the interaction of precipitation 

with static recrystallization kinetics in a consistent way. The experimentally observed 

plateaus of recrystallization stasis are clearly caused by Zener pinning, however, in 

contrast to other models, we assume that the recrystallization front never comes to a stop 

and maintains a non-zero value even if the retarding pressure exceeds the driving pressure 

for recrystallization. We interpret this behavior in terms of the retarded movement (flow) 

of an interface through a viscous medium, the velocity of which is determined by local 

coarsening of precipitates along the grain boundary. Our choice of grain boundary 

mobilities (free and pinned) delivers the temperature-dependence of the kinetic processes 

naturally from independent experiments and avoids that these quantities must be 

considered as fitting parameters.  
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In steel production, thermo-mechanical treatment at elevated temperatures is an inevitable 

step for controlling the microstructure and, thus, the mechanical-technological properties of 

the final product. One of the main goals in modelling microstructure evolution is the 

prediction of progress and interaction of hardening and softening mechanism at 

temperatures, where reheating, hot rolling, finish rolling and coiling are typically carried out. 

The main mechanisms that need to be accounted for are precipitation, grain growth, solute 

drag, recovery, recrystallization and phase transformation, which are to be described as 

functions of temperature, external loading and chemical composition of the material. In the 

present work, we present a new approach for dealing with these problems and apply it to the 

thermal and mechanical loading of microalloyed steel. Within this model, we quantitatively 

predict, for instance, the phenomenon of recrystallization stop in the presence of 

precipitation. The computational treatment is verified against experimental data from 

literature, where good agreement is achieved. 

1. Introduction 

For the case of single phase alloys that is, e.g., C- Mn- steel in the austenitic range, many 

constitutive laws are available that are capable of providing more or less sufficient 

knowledge about the static recrystallization behaviour [1]. In multiphase alloys, such as V-

microalloyed steel, recrystallization kinetics can become more complicated and constitutive 

laws are inappropriate to describe recrystallization kinetics since a further dimension enters 

and influences the system: Particles cause a pinning pressure on grain boundaries. The 

magnitude of this Zener Drag effect is mainly determined by the precipitated phase fraction 

and the precipitate size but has its physical roots in the saving of energetically unfavourable 

total grain interface area. 
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Deformation provides a higher dislocation density in the material and affects the 

precipitation process by providing a higher nucleation site density and a higher diffusion rate 

in the matrix. As a consequence of this interplay of mechanisms, a description of 

microstructure kinetics with a single Avrami- curve [2] is not possible. Amongst many 

others, Medina et al. [3] show recrystallization plateaus in the presence of the common 

microelements Ti, Nb and V.  

Modelling approaches are available in literature describing the simultaneous precipitation 

and recrystallization kinetics either phenomenological or physically based. Medina et al. [3] 

use a framework of interrelated Avrami based equations. Developing for each composition 

a grain size and strain dependent formula to calculate a critical maximum temperature where 

barely a plateau can be measured, they classify recrystallization kinetics into two regimes: a 

fast one with a low activation energy and a slow one where precipitates pin the grain 

boundaries. Nonetheless, this approach is not capable of illustrating the experimentally 

observed curve shapes but shows an assessment of transformation times in dependence of 

various material conditions and thermo-mechanical processing routes.  

Zurob et al. [4] suggest a physical approach for modelling those plateaus. By simulating 

both, strain-induced precipitation and recrystallization kinetics, they interconnect the 

microstructure and precipitate evolution by the integral value of driving and retarding 

pressures. Once the Zener force exceeds the driving force, grain growth and recrystallization 

progresses come to a stop. Due to coarsening, (Ostwald ripening), the number density of 

precipitates decreases, they exert less influence on grain boundary movement and the Zener 

pressure decreases. At this point, the sum of driving pressure and retarding pressure are 

positive again and grains continue to grow. In this approach, Zurob et al. deliver simulation 

results, which show the experimentally observed curve progression.  

Although some models describing coupled precipitation kinetics and microstructure 

evolution are available, in most approaches, either the precipitation and recrystallization 

kinetics are modelled implicitly, such that one set of parameters is only valid for one 

composition, or that the modelling of precipitation kinetics is fitted with phenomenological 

parameters (usually interface energies), such that the coupled model delivers microstructure 

results (e.g. recrystallized fraction) being in good agreement with experimental results.  

In the present work and in contrast to the conventional approaches, we utilize a precipitate 

kinetics framework that is based on independent thermo-physical quantities (thermodynamic 
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and kinetic databases). From these, temperature, composition and size dependent system 

parameters, such as interfacial energies [5–7], are computed. The state parameters are then 

evolved as a function of chemical composition, heat treatment and deformation regime as 

well as microstructure (grain size, dislocation density, etc.). For simulation of microstructure 

evolution, we utilize a recently developed single class recrystallization model, in which the 

driving forces and mobilities are computed by means of the approaches introduced 

subsequently. In this framework, we describe the precipitation and recrystallization 

interaction of low carbon steel, where the recrystallization kinetics are influenced by 

precipitate phases. 

 

2. Modelling approach 

2.1 Model development 

The thermo-kinetic simulations of precipitation with coupled microstructure evolution 

are carried out with the software package MatCalc (version 6.00.007). The physical 

concept and functionality of the precipitate evolution, as delivered by MatCalc, is 

explained for the case of micro alloying elements in steel elsewhere [8,9]. To the 

precipitation kinetics routines of MatCalc, we couple a microstructure evolution model, 

which is introduced next.  

The nucleation rate of recrystallized grains is modelled as  
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where δ is the subgrain diameter, D is the mean un-recrystallized grain diameter, Crx is a 

calibration coefficient, Qrx is an activation energy equal to the value for substitutional 

self-diffusion along grain boundaries, Xrx is the recrystallized fraction, R is the universal 

gas constant and T is temperature. The inverse term including the grain size and the 

subgrain size captures the condition that only subgrains (LAGB), which are in contact 

with a high-angle grain boundary can become nuclei for recrystallization as 

experimentally observed in ref. [10].  

A second condition for nucleation is that the subgrain exceeds a critical size, δcrit. 

This is given by the ratio of the interfacial energy of the LAGB, γLB and the driving 

pressure, PD, with 
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The driving pressure is introduced by deformation and calculated by means of a total 

dislocation density, ρ, the shear modulus, μ, and the Burgers vector, b. Before nucleation 

takes place, the subgrain has to grow in order to overcome this critical size. On the one 

hand, the subgrain size is reduced by the deformation-induced dislocation that are stored 

in the subgrain boundaries. Nes [11] and Estrin [12] introduced the principle of similitude, 

where the dislocation density is correlated to a subgrainsize, 0 , by means of a material 

parameter K, which is taken as starting subgrain size directly after deformation. On the 

other hand, the subgrain grows due to the driving pressure of capillary, where LBeff,M  is 

the effective LAGB mobility.    
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The growth velocity of stable nuclei, rxD , is expressed by the product of an effective 

HAGB mobility, Meff, HB, and the driving pressure as 

)1( rxDHBeff,rx XPMD  .       ( 4 ) 

With increasing degree of recrystallization, less deformed volume is available in which 

the recrystallized grains can grow into. To account for that, the growth velocity is 

balanced with the unrecrystallyzed volume fraction, 1-Xrx. 

Deformation induces an increased dislocation density in the material and 

originates a driving pressure for recrystallization. The deformation-induced dislocation 

density is calculated by means of a Kocks- Mecking-type approach [13], which has been 

extended for static recovery by Sherstnev et al. [14].    
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with the Taylor factor, M, the critical dislocation annihilation distance, dann, the 

substitutional self-diffusion coefficient at dislocations, DDis, the Boltzmann constant, kB, 

the strain rate φ, and material parameters A, B, C.  

The influence of precipitates on recrystallization kinetics is incorporated via the 

Zener pressure, ZP , which is given for a spatial distribution of spherical precipitates by 

Nes et al. [15] as  
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where HB   is the HAGB energy, f is the phase fraction of precipitates and r is the 

precipitate radius. In contrast to most other approaches [16–18], we do not incorporate 

the Zener pressure into the driving force term, which may lead to a complete growth stop 

of the recrystallization front if the retarding force exceeds the driving force. In our 

treatment, we assume that the precipitates, which are arranged at the pinned grain 

boundary, are interconnected along a high velocity diffusion path, which allows for fast 

local coarsening of precipitates. Hence, the Zener pressure locally decreases and allows 

for a further boundary movement till a new front of precipitates is encountered, where the 

process of local coarsening is repeated. We aggregate this mechanism in the form of an 

effective mobility, which is written as 
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where the effective boundary mobility is calculated as superposition between a free 

mobility, freeM  , in the absence of pinning, and a minimum mobility pinnedM , caused by 

precipitate pinning. This new approach provides a possibility for boundary movement 

even if the mean Zener pressure of the system exceeds the driving pressure for 

recrystallization.  

2.2 Model Parameters 

To verify the new model on experimental data, an evaluation of important parameters is 

performed first, which is summarized in table 1. Since the grain boundary mobility is a 

most important input parameter in our recrystallization model, we express this quantity 

in relation to well-assessed diffusion coefficients. Turnbull [19] suggests an upper bound 

for the boundary mobility, TBM , with 

RTb

VD
MM

2
mGB

HBfree,TBHBfree,free

  ,     ( 8 )   

with the substitutional diffusion coefficient at grain boundaries, GBD , the grain boundary 

width,   and the molar volume of the material, mV . Since atomic attachment kinetics 

are not accounted for within this approach, we introduce a dimensionless linear factor, 

HBfree, , which conserves the temperature dependency of the free mobility as the ratio of 

the grain boundary diffusion coefficient and temperature. We adopt GBD  in austenite 

from a recent diffusion assessment of Stechauner and Kozeschnik [20]. The linear factor 
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is adjusted to the mobility measurements of Zhou et al. [21] of plain C-Mn steel in 

austenite, where good agreement is achieved with a value of 1.5%.  

 

The temperature dependency of the pinned mobility should be equal to the free 

mobility. Kirchner [22] suggests for precipitate coarsening at grain boundaries the same 

temperature dependency as Turnbull for the grain boundary mobility. Thus, we model the 

pinned mobility as fraction of the free mobility, which delivers with Eq. 4 a reduced 

growth rate in the presence of precipitates as  

freeHBpinned,pinned MM  .         ( 9 ) 

Application of this concept (section 3) shows that the mobility decreases by two orders 

of magnitude to 3% due to the retarding pressure exerted by the precipitates. The driving 

pressure for recrystallization is mainly determined by the deformation-induced 

dislocations and interacts with both nucleation and growth of the new microstructure. 

Therefore, the parameters (A, B, C) of the extended Kocks- Mecking model (Eq. 5) are 

adjusted such as to reproduce flow curve results of Hernandez et al. [23]. The observed 

dislocation densities do not exceed 7·1014 m-2 and deliver appropriate flow stresses in the 

sense of the Taylor forest hardening law with input parameters similar to those mentioned 

in ref. [4]. The activation energy for nucleation of recrystallization (Eq. 1) mainly 

determines the temperature dependency of the nucleation rate. Occurring at the grain 

boundary, nucleation is assumed to obey the temperature dependency of grain boundary 

diffusion. Thus, this value is also taken from ref. [20]. The linear factor, rxC , is an 

adjusting parameter, which balances the nucleation suppressing effect of the activation 

energy, but it is left constant over the range of considered materials (section 3). A 

collection of the elaborated parameters is given in table 1.   

 

Table 1.  Simulation input parameters 

Parameter Unit Value Ref. 

ηfree,HB - 0.015 [19–21] 
ηpinned,HB - 0.03 This work 
A - 50 This work 
B - 5 This work 
C - 5·10-5 This work 

Qrx 
kJ mol-

1 145 [20] 
Crx s-1 1e6 This work 
γHB J m-2 1.311-0.005·T [4] 
γLB J m-2 0.5·γHB This work 
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3. Validation  

Finally, the present microstructure model with combined precipitation kinetics is verified on 

experimental results from Medina et al. [24], who measured the progress of static 

recrystallization in diverse V-microalloyed steels. Table 2 summarizes the different 

compositions, starting grain sizes, D0 and solid solution temperatures, Tsol, of the 

investigated materials. 

Table 2. Considered materials at 35.0 and  

Steel C 
[wt.-%] 

V 
[wt.-%]

N 
[wt.-%] 

Tsol 

[°C] 
D0 
[µm] 

S1 0.125 0.065 0.0123 1056 167 
S2 0.113 0.095 0.0144 1106 162 

 

The two considered materials are experimentally analysed at a constant strain, �, strain rate, 

, and at different temperatures. The different precipitate solution temperatures, which are 

calculated with the thermokinetic software MatCalc, indicate different driving forces for 

precipitation. Steel S1 has a lower driving force for precipitation than steel S2 due to lower 

V and N contents. Therefore, the retardation of recrystallization due to precipitation is more 

pronounced in the more supersaturated alloy S2. At lower temperatures (below 1000°C), 

recrystallization starts to interact with precipitation and both steels show in that temperature 

range a recrystallization plateau. The more supersatured system S2 shows, in comparison to 

steel S1, recrystallization plateaus at lower levels of recrystallized fractions, because the 

Zener pressure exceeds the driving pressure for recrystallization earlier. When the retarding 

pressure exceeds the driving pressure, further kinetics are limited by the pinned mobility and 

the progress of recrystallization is decelerated. At higher temperatures (T≥1000°C), there is 

no interaction between precipitation and precipitation observed and both alloys show nearly 

the same microstructure evolution kinetics. Figure 1 depicts the results of our simulation 

approach in comparison to the experimental measurements of Medina et al [24].           
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4.  

Figure 1.  Recrystallization experiments vs. simulation for steel S1 and S2 at different 

temperatures 

 

5. Summary  

A new microstructure model is presented, where the static recrystallization process is 

described by the mechanisms of nucleation and growth. The growth rate of recrystallized 

grains is given by the product of grain boundary mobility and driving pressure. In contrast 

to several other models, the precipitate influence is incorporated into the mobility term and 

not the driving pressure term, which allows for a further growth of the recrystallized fraction 

even if the Zener force exceeds the driving force. The model is verified against experimental 

data from ref. [24], where good agreement is achieved.   
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Abstract 

 

After and during hot rolling of steel, recrystallization can occur and impact severely on 

the resulting product properties. Recrystallization kinetics are, in particular, influenced 

by the addition of micro-alloying elements. On the one hand, micro-alloying elements in 

solid solution, such as Nb, Ti and V, exert a solute drag effect, which reduces the mobility 

of the grain boundaries. On the other hand, micro-alloying elements form precipitates, 

which exert a particle pinning force on the grain boundaries. In the present work, we 

formulate a physically-based recrystallization model with grain boundary mobilities that 

account simultaneously for the solute drag and Zener drag impact of Nb, Ti and V. We 

verify the model on numerous experiments on static recrystallization from literature, 

where good agreement is observed with a single set of simulation input parameters. 

 

Introduction 

The mechanism of recrystallization determines the final product quality during hot 

deformation of steel. Recrystallization kinetics are mainly influenced by the steel 

composition, the deformation velocity, the degree of deformation, the starting austenite 

grain size and the deformation temperature, which is phenomenologically demonstrated 

by Medina and Quispe [1].  

The addition of micro-alloying elements to the steel composition has a particular 

influence on the recrystallization behavior of steel. On the one hand, micro-alloying 

elements, such as Nb, Ti and V, can form carbo-nitride precipitates, which exert a 
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retarding pressure on the grain boundaries [2]. This pinning force may even change the 

appearance of the recrystallized fraction vs. time curves and “pinning plateaus” become 

observable [3]. On the other hand, micro-alloying elements exert a solute drag effect on 

grain boundary movement. Andrade et al. [4] experimentally confirmed this for Nb, Ti 

and V additions in steel. In literature, a substantial amount of empirical and physical based 

approaches for predicting recrystallization behavior is available. Medina and Quispe [1] 

present an empirical and Avrami- based [5] model, where the recrystallization plateaus 

are modelled with two interrelated transformation curves. The solute drag impact is 

accounted for with different activation energies. Rehman et al. [6,7] suggest a physically-

based approach for Nb micro-alloyed steel, where the recrystallization plateaus are 

considered to be caused by pinned dislocations. The solute drag impact is modelled with 

the Cahn approach [8], which reduces the grain boundary mobility in dependence of the 

solute type and solute concentration.  

In this work, we introduce an advancement of a recently published state parameter-based 

microstructure evolution model [9], which accounts for both effects, the solute drag and 

the Zener drag. We compare the model results to various experiments on micro-alloyed 

steel in literature. Thereby, we formulate a new nucleation model for recrystallization, 

which is introduced next. 

 

The model 

The nucleation rate of newly formed recrystallized grains can be described by the product 

of the number of potential nucleation sites, potN , the flux of subgrains becoming 

supercritical from a distribution function, 
R

t




,  and a factor accounting for the already 

consumed nucleation sites, NucB , with  

N
rx

pot uc

N R
N B

t t

 


 
        ( 1 ) 

Potential nucleation sites are subgrains, which are located at the grain boundary and 

exceed a critical size in the sense of the Bailey-Hirsch mechanism [10]. We express the 

number density of potential recrystallization nuclei as surface weighted ratio between the 

specific available high angle grain boundary (HAG) surface area, ava , and the cross 

section of a supercritical low angle grain boundary (LAG), crit,LAGA . Thereby, we 

approximate the HAG geometry with a truncated octahedron, as 
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   av 3 2
crit,LAG crit

1 1 1

3
8 2

2

potN a f f
A rR

 


 
 
 
 

    ( 2 ) 

where R is the mean grain radius, rcrit is the critical LAG radius and  f   is a surface 

factor for the deformed grain geometry. The latter is taken from Zhu et al. [11] for the 

case of plane strain compression.  

The LAG distribution can be characterized with a Rayleigh function [6]. The fraction of 

the subgrains, which are larger than the critical size is given by the function 

2
crit( ) exp ( )

4
R t X t

   
 

,       ( 3 ) 

where CritX is the critical subgrain size normalized by the mean subgrain size. The flux of 

subgrains that become super-critical and serve as stable nuclei during and after hot 

deformation is then obtained by differentiation with respect to time as 

critcrit

( ) 1
( )

2

R t
R t X X

t



 


.       ( 4 ) 

The normalized critical subgrain diameter and its rate, critX


, can be the calculated in 

dependence of a mean LAG size, meanr , and critical LAG size. 

crit
C

mean

r
X

r
 ,         ( 5 ) 

crit meancrit
C 2

mean mean

r r r
X

r r

 


  .       ( 6 ) 

The evolution of the mean and critical subgrain diameter values has been described in a 

previous contribution [9]. During the nucleation period, already stable nuclei consume 

grain boundary area, which becomes unavailable for further nucleation. Again, we use a 

surface weighted approach in dependence of the recrystallized grain density, rxN , in order 

to approximate the effect of occupied nucleus sites on the nucleation rate with 

 2

rx crit
Nuc

av

1
N r

B
a


  .       ( 7 ) 

The subsequent growth of stable nuclei is influenced by precipitates and solute atoms, 

which both affect the grain boundary mobility [8,9].  

In contrast to most other approaches [12,13], in the present work, the Zener pressure term 

is not included into the driving pressure term. We assume that the precipitates, which are 

arranged at the pinned grain boundary, are interconnected along high velocity diffusion 
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paths (grain boundaries), which trigger fast local precipitate coarsening. We approximate 

the effect of this local coarsening mechanism on recrystallization kinetics by means of an 

effective mobility for each considered precipitate type T, which is written as 

D Z D Z
free pinned D Z

D Dprec, T

pinned, D Z

1 ,

,T

P P P P
M M P P

P PM

M P P

    
         


,  ( 8 ) 

where the precipitate effected boundary mobility, prec, TM , is calculated as superposition 

between a free mobility, freeM , in the absence of pinning, and a minimum mobility pinnedM

, caused by precipitate pinning. This treatment allows for a slower grain boundary 

movement even if the Zener pressure, ZP , exceeds the driving pressure for 

recrystallization, DP .  

The impact of solute drag is modelled with the Cahn approach [8], where the dragging 

effect of solute atoms is incorporated into the mobility term for the solute drag exerting 

element E with 

SD,
GB,E

1
E

E

M
C

 ,       ( 9 ) 

where ESD,M  is the mobility of the grain boundary in the presence of solute drag, GB,EC  is 

the grain boundary concentration and   is an inverse mobility. The latter is mainly 

determined by a grain boundary/atom interaction energy, BE , and is given as 

 2

B,E B,E

B,E CB,E M

sinh
E ERT

E D V RT RT




         
    

,     ( 10 )  

where   is the grain boundary width, MV  is the molar volume of the matrix phase, CB,ED  

is the cross boundary diffusion coefficient, R is the universal gas constant and T is the 

temperature. The effective HAGB mobility can then be calculated in dependence of 

precipitates and solutes with  

1

eff,HB
prec,T SD, E

1 1
M

M M


 

   
 

.      ( 11 ) 

 

Input parameters and validation 

Since the grain boundary mobility is a central input parameter in our recrystallization 

model, we further detail the evaluation procedure for mobilities, below. For the mobility 
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of a free, un-pinned grain boundary, we use an expression suggested by Turnbull [14], in 

which the grain boundary mobility, TBM , is described by  

GB m
free free TB free 2

D V
M M

b RT

     ,      ( 12 ) 

with an average substitutional diffusion coefficient at grain boundaries, GBD , and a 

dimensionless linear factor, free . We adopt GBD  in austenite from a recent assessment of 

Stechauner and Kozeschnik [15]. The linear factor is adjusted to the mobility 

measurements of Zhou et al. [16] of plain C-Mn steel in austenite, where good agreement 

is achieved with a value of 1.5%.  

The temperature dependence of the pinned mobility should be equal to that of the free 

mobility. Kirchner [17] suggests, for precipitate coarsening at grain boundaries, the same 

temperature dependency as Turnbull for the grain boundary mobility. Thus, we model the 

pinned mobility as fraction of the free mobility, which delivers with Eq. 4 a reduced 

growth rate in the presence of different precipitate types, T, as  

pinned, pinned, freeT TM M  .       ( 13 ) 

The solute drag impact is mainly determined by the binding energy of the solute drag 

exerting element to the grain boundary. Andrade et al. [4] determined corresponding 

values for Nb, Ti and V and gives an order for the solute drag strength, where Nb is the 

strongest and V is the weakest solute drag exerting element. Maintaining the given 

hierarchy, we define the element dependent trapping energies accordingly. The key 

values for the simulations carried out in this work are summarized in table 1. 

 

Table 1: Input parameters for recrystallization simulation 

Paramete
r 

Value Unit Ref. 

γHB 
1.3111-
0.0005T 

J/m2 [12] 

EB,Nb 17 
kJ/mo
l 

This work 

EB,Ti 10 
kJ/mo
l 

This work 

EB,V 2.5 
kJ/mo
l 

This work 

ηfree 1.5·10-2 - [15,16] 
ηpinned,Nb 0.6·10-2  This work 
ηpinned,Ti  1·10-2 - This work 
ηpinned, V 3·10-2 - This work 
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To validate the present model, we analyze the experimental observations on simultaneous 

recrystallization and precipitation in Nb, Ti and V alloyed steels reported by Medina et 

al. [18–20]. The selection of experiments offers a wide range of recrystallization affecting 

parameters. Among them are different strains, ε, starting grain sizes, D0, temperatures and 

compositions. Solely the strain rate is held constant during every experiment at 3.63s-1. 

Table 2 summarizes the materials and experiments considered further. 

 

Table 2: Chemical composition of simulated materials 

alloy 
Ti, Nb, V 
[wt.-%] 

C 
[wt.-
%] 

N 
[wt.-
%] 

T 

[°C] 

ε 
D0 

[µm] 
Ref. 

Ti- steel 0.075 (Ti) 0.15 0.0102 850-1100 0.35 90 [18] 

Nb- steel 
0.042 
(Nb) 

0.11 0.0112 900-1100 
0.2 

122 [20] 

V- steel 0.06 (V) 0.12 0.0123 850-1100 0.2-0.35 167 [19] 
 

Figure 1 summarizes our simulation results in comparison to experimental data by 

Medina et al. [18–20]. Both, the simulation results and the experimental data of the V 

steel show that increasing strain accelerates recrystallization kinetics. The height of 

recrystallization “plateaus” are strongly dependent on the accumulated strain. The strain 

range changes the plateau heights by approximately 20% recrystallized fraction. In 

comparison to the V and Ti alloy, the Nb alloy shows a retarded recrystallization 

behavior, which is caused by the strong solute drag impact. The grain size dependence is 

also reproduced well by our simulation. This is clearly observable on the Ti alloy, which 

starts at the highest temperature at a recrystallized fraction of approximately 15%, 

attributable to the lowest starting grain size of 90μm. One interesting observation is, that 

the pinned mobility delivers, for each precipitate type, a plausible temperature 

dependency, supporting the pinned mobility concept applied in the present work.   
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Figure 1: Simulation results vs. experimental data of Medina et al. [18–20] 

 

Summary 

A state parameter-based microstructure model is presented, which successfully integrates 

the impact of precipitates and solutes on recrystallization kinetics. The precipitate 

influence is incorporated into the grain boundary mobility, which allows for a further 

growth of the recrystallized fraction even if the Zener force exceeds the driving force for 

recrystallization. The solute drag impact is modelled with the Cahn approach and captures 

the different impact of Nb, Ti and V on grain boundary motion. The model is validated 

against several experiments from literature [18–20]. 
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